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Communication Complexity of Dual Decomposition Methods for
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Abstract— Dual decomposition methods are among the most
prominent approaches for finding primal/dual saddle point so-
lutions of resource allocation optimization problems. To deploy
these methods in the emerging Internet of Things (IoT) networks,
which will often have limited data-rates, it is important to
understand the communication overhead they require. Motivated
by this, we introduce and explore two measures of communica-
tion complexity of dual decomposition methods to identify the
most efficient communication among these algorithms. The first
measure is ε-complexity, which quantifies the minimal number of
bits needed to find an ε-accurate solution. The second measure is
b-complexity, which quantifies the best possible solution accuracy
that can be achieved from communicating b bits. We find the exact
ε- and b-complexity of a class of resource allocation problems
where a single supplier allocates resources to multiple users.
For both the primal and dual problems, the ε-complexity grows
proportionally to log2(1/ε) and the b-complexity proportionally
to 1/2b. We also introduce a variant of the ε- and b-complexity
measures where only algorithms that ensure primal feasibility
of the iterates are allowed. Such algorithms are often desirable
because overuse of the resources can overload the respective
systems, e.g., by causing blackouts in power systems. We provide
upper and lower bounds on the convergence rate of these
primal feasible complexity measures. In particular, we show
that the b-complexity cannot converge at a faster rate than
O(1/b). Therefore, the results demonstrate a trade-off between
fast convergence and primal feasibility. We illustrate the result
by numerical studies.

I. INTRODUCTION

The allocation of shared resources is a fundamental task in
most networks. For example, power networks are responsible
for allocating electric power, and communication networks for
allocating data. While the algorithms employed to allocate
resources in traditional networks are well established [1]–[4],
the emergence of the Internet of Things and Cyber-physical
systems means that our networks are becoming more diverse,
with varying levels of communication capabilities. In particu-
lar, many of these networks will have limited data rates. For
example, future communication networks will offer extremely
low latencies that can only be achieved at the cost of low data-
rates [5]. Likewise, data-rate is limited in networks with high
degree of collision and interference, such as in dense wireless
networks and in networks relying on communication through
power lines [6], [7]. Furthermore, underwater networks have
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data-rate limits as they communicate via acoustic signals [8].
Motivated by these challenges, we study how resources can
be allocated in networks with limited data rates.

In coordinating the solutions to resource allocation problems
in networks, dual decomposition methods have been among
the most prominent approaches [1], [2]. They play an impor-
tant role in, e.g., communication networks [3], [4] and power
networks [9]–[13]. These methods are based on coordinating
dual variables, often interpreted as prices, to synchronize the
supply and demand in networks, with the purpose of optimiz-
ing a global objective function. However, bandwidth limited
dual decomposition methods have not received much attention
in the literature, despite the emerging need to efficiently use
communication bandwidth in many networks.

The theory of communication complexity has been con-
ceived to answer questions about how many bits must be
communicated to solve problems that require coordination
between entities [14], [15]. Informally, communication com-
plexity measures the minimal number of bits needed to solve
the most “communication intense” problem in some class of
problems, when the communication is lossless. For example,
in [14] Yao studies the minimal number of bits that two
processors must communicate to compute the output of a
class of functions that take inputs from both processors. More
recent work has considered the communication complexity of
finding Nash equilibrium in games [16], [17], of statistical
inference in networks with sparsely located data [18], [19],
and of minimizing the sum of two convex functions [20].

Besides the work in [20], communication complexity of dis-
tributed optimization problems has not received much attention
in the literature. Nevertheless, some interesting papers have
studied various types of distributed optimization algorithms
in bandwidth limited networks [21]–[24]. However, these
papers do not study algorithm invariant quantities such as
communication complexity. Moreover, the work in [20]–[24]
considers optimization problems where there are no shared
resources or coupling constraints, as opposed to what we
do in this paper. Nevertheless, many important optimization
problems revolve around allocating shared resources and have
coupling constraints [1]–[4], [9]–[13]. Those problem are
naturally decomposed using duality theory. This gives new
analytical challenges compared to the earlier work [20]–[24].

Bandwidth limited dual decomposition algorithms are con-
sidered in [25] and [26], two papers most closely related
to our work. The work in [25] studies the convergence of
general gradient methods, including many dual decomposition
methods, when the gradients are quantized to limited number
of bits. However, [25] provides no lower bound complexity
results for these algorithms. The work in [26] studies quan-
tized dual decomposition algorithms for a class of resource
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allocation problems that have strongly convex dual problems.
The authors of [26] also provide a lower bound on the
convergence of the algorithm based on differential entropy.
However, this lower bound is only valid when the initialization
of the algorithm is randomly generated. In contrast to [26], we
consider resource allocation problems whose dual problems
are not necessarily strongly convex. We also provide different
type of lower bounds from [26] based on communication
complexity, which are valid even if the initialization is not
randomly generated. Moreover, unlike [25] and [26], we
study how the primal feasibility of bandwidth limited dual
decomposition methods can be ensured, which is essential in
on-line implementations of these algorithms.

A. Contributions of This Work

The main contribution of this paper is to introduce and
explore the communication complexity of dual decomposi-
tion methods for solving distributed resource allocation prob-
lems. That includes determining optimal algorithms (in terms
of communicated bits) and theoretical communication lower
bounds. We consider a class R of optimzation problems where
a single supplier allocates some resource, such as power or
data, to multiple users. To solve the problems inR the supplier
communicates a pricing signal (or a dual variable) to the users
who respond to the price by optimizing a local subproblem
(by maximizing the associated profit function). The supplier
can update the price using any iterative algorithm that is
implementable using the following one-way communication
model: at each iteration i) the supplier broadcasts the updated
price using finite number of bits (over a lossless communica-
tion channel), ii) the supplier measures the total consumption
of the resources and can use this information to update its
price. This communication model naturally appears in many
networks, e.g., in power networks [11] and in communication
networks [2].

Following the above setting, we introduce two measures
of communication complexity of the problem class R, ε-
complexity and b-complexity. Informally, ε-complexity is the
minimal number of bits needed to achieve an ε-accurate
solution to the most “difficult” problem in R. Similarly,
the b-complexity is the best solution accuracy that can be
achieved to the most “difficult” problem in R when b bits
are communicated. We provide an exact ε-complexity and
b-complexity as a function of ε and b, respectively. The ε-
complexity grows proportionally to log2(1/ε) as ε decreases
and the b-complexity decreases proportionally to 1/2b as
b grows. Moreover, we provide the optimal algorithms (or
quantization schemes) that achieve the ε- and b-complexities.

Since the users do not communicate to the supplier, but
instead take the measurable action of consuming resources,
it is desirable to ensure primal feasibility at every algorithm
iteration. Otherwise, the users might consume more resources
than are available and overload the system, which can cause
blackouts in power networks, or outages in wireless networks.
This has motivated us to consider also the class of primal
feasible algorithms that are feasible at every iteration for all
problems in R. We characterize that class of primal feasible

algorithms and explore the ε-complexity and b-complexity
measures when only such algorithms are allowed. In this case,
we show that the b-complexity cannot converge at a faster rate
than O(1/b). Therefore, the results demonstrate a trade-off
between fast convergence and primal feasibility.

Preliminary studies of this work appeared in [13], [27].
However, all the theoretical and numerical results in this paper
are appearing here for the first time.

B. Notation and Definitions

The set of real, positive real, and natural numbers are
denoted by R, R+, and N. We set N0 = N ∪ {0}. |A| is
the cardinality of the set A. The projections of z ∈ R to R+

and [m,M ] are denoted by dze+ and [z]Mm . ||·|| is the 2-norm
and dist(x,X ) = infz∈Z ||x − z||. A function f : Rn → R
is µ-strongly-concave, or just µ-concave, on X ⊆ Rn if
f(y) ≤ f(x)+ 〈∇f(x),y−x〉− µ

2 ||y−x||2 for all x,y ∈ X .
A function f : Rn → Rm is Lipschitz continuous on X ⊆ Rn
if ||f(y)− f(x)|| ≤ L||y − x|| for all x,y ∈ X .

II. PROBLEM FORMULATION AND RELATED BACKGROUND

We now introduce some important background information
needed to obtain the main results of this paper. First in
Section II-A, we introduce the class of resource allocation
problems that we consider. Then in Section II-B, we in-
troduce the considered communications schemes. Finally in
Sections II-C, we introduce the concept of communication
complexity for resource allocation problems.

A. Resource Allocation and Dual Decomposition

Consider a network with N users N = {1, . . . , N} and a
single supplier of some resource, e.g., electricity. The resource
allocated to user i ∈ N is denoted by xi ∈ R+ and the total
supply capacity is C ∈ R+. The Resource Allocation problem
that models the resource distribution is given by [1], [2]

maximize
x1,...,xN

U(x) :=
N∑
i=1

Ui(xi),

subject to
N∑
i=1

xi ≤ C,

xi ∈ [mi,Mi],

(1)

where Ui : R → R is a utility function, x = (x1, . . . , xN ),
and mi,Mi ∈ R are lower and upper bounds on the demand
of user i ∈ N . We consider the following class of problems.

Definition 1. Let Rµ,N,P denote the class of all Problems (1)
where the following assumptions hold: Ui(xi) is µ-concave
and U ′i(mi) ≤ P for i ∈ N , and

∑N
i=1mi ≤ C (the problem

is feasible).1 We write R = (U, C,m,M) ∈ Rµ,N,P to indi-
cate that Problem (1) with the parameters U = (U1, . . ., UN ),

1It is implicitly assumed that the users and the supplier know µ and P . The
assumption that U ′

i(·) are µ-concave is standard. The additional assumption
that U ′

i(mi) ≤ P is not restrictive, since we always have that Ui(mi) <∞.
Therefore, such a P always exists but finding it might require some insight
into the application at hand.
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C, m = (m1, . . .,mN ), and M = (M1, . . .,MN ), is in
Rµ,N,P . We denote by x?R the optimal solution to R ∈ Rµ,N,P .

Resource allocation problems are usually solved by dis-
tributed methods based on duality theory [1], [2]. The dual
problems of primal Problem (1) are on the form

minimize
p

D(p),

subject to p ≥ 0,
(2)

where D and p are the dual function and dual variables,
see [28, Chapter 5]. Formally, D is given by

D(p) = maximize
x∈

∏N
i=1[mi,Mi]

N∑
i=1

Ui(xi)−p

(
N∑
i=1

xi−C

)
. (3)

Lemma 5 in Appendix A shows that all dual problems
associated to primal problems in the class Rµ,N,P are in the
following problem class.

Definition 2. Let DL,P denote the set of all (dual) optimiza-
tion problems of the form

minimize
p

D(p)

subject to p ∈ [0, P ],
(4)

where i) D : R+ → R is convex and has L-Lipschitz
continuous gradient D′(·), and ii) at least one optimal solution
p? to Problem (4) is also an optimal solution to Problem (2).
We write D ∈ DL,P to indicate that Problem (4) with the
objective function D is in DL,P .

Due to Lemma 5 in Appendix A, the dual problem of every
primal problem R ∈ Rµ,N,P is in the class DL,P where L =
N/µ.2 Then the solution to the primal and dual problems can
be coordinated by using dual decomposition:

xi(t) =xi(p(t)) := argmax
xi∈[mi,Mi]

Ui(xi)− p(t) xi

=
[
(U ′i)

−1(p(t))
]Mi

mi
, (5a)

D′(p(t)) =C −
N∑
i=1

xi(t), (5b)

p(t+1) = [p(t)− γ(t)D′(p(t))]
P
0 , (5c)

where t ∈ N0 is the iteration index, p(0) ∈ [0, P ] is some
given initialization, and γ(t) ∈ R+ is a step-size. This
algorithm converges to optimal primal/dual solutions under
mild conditions [2, Theorem 1].

B. Communication Model and Algorithms

In many real-world networks, the supplier of a resource
can measure the dual gradient D′(p) since it is the difference
between supply and demand. However, the supplier has to
communicate some coordination signals to the users, often
over bandwidth limited channels. Formally, this exchange of
information is captured by coordination algorithms that, at
each iteration t, follow these two operations:

2Since at least on optimal solution to the dual Problem (2) is in [0, P ] we
can restrict it to the interval [0, P ] by considering Problem (4). Problem (4)
has bounded feasibility set, a property used to derive some of the results.

User i for i = 1, · · · , N

(A) Update x: xi(t) = xi(p(t))

(F ) Receive: ∆̄(t)

(G) Decode: ∆(t) = Decoder(∆̄(t))

(H) Update p: p(t+1)=dp(t)−∆(t)e+

Lossless Communication Channel

∆̄(t)∈{0, 1}r(t)

Supplier

(B) Measure: D′(p(t))

(C) Quantize: ∆(t)=θt(D
′(p(0)), . . . , D′(p(t)))

(D) Encode: ∆̄(t) = Encoder(∆(t))

(E) Broadcast: ∆̄(t)

Measurement

D′(p(t)) = C −
∑
i∈N

xi(t)

Fig. 1: The OneWay-DD algorithm.

• Feedback Information: After the users i ∈ N take their
actions xi(t), then the supplier can measure deviation
between total consumption and supply, i.e., the dual
gradient D′(p(t)) = C −

∑N
i=1 xi(t).

• One-Way Communication: The suppliers transmit
r(t) > 0 bits of information at iteration t to the users
over a lossless communication channel.

Using this exchange of information, we want to find the algo-
rithm that can solve the resource allocation problems by using
the fewest number of bits in the one-way communication.
In particular, since it is the dual gradients D′(p(t)) that are
available at the supplier and are needed so that the users can
do their local action [see Eq. (5a)], we need to find the best
way to quantize the information in D′(p). In other words, at
every iteration t, we need to find the best way to quantize the
information in D′(p(0)), . . . , D′(p(t)). For that purpose, we
now define the class of all such quantization schemes.

Definition 3. We call a pair (p(0), θt(·)) a quantizion scheme
if p(0) ∈ [0, P ] and θt : Rt+1 → Vt, where Vt ⊆ R. For
all t, we have |Vt| = 2r(t) ∈ N where r(t) > 0 is the
communication rate at iteration t. We denote the set of all
quantization schemes by QP .

Remark 1. We assume that r(t) > 0 and |Vt| = 2r(t) ∈ N,
i.e., the users receive at least one bit of information from the
supplier at each iteration. This is a natural assumption, since
if the users receive no new information at some iteration then
they have no reason to change their update from the previous
iteration.

The value p(0) is an initialization of the dual variable
and should be from the interval [0, P ], see Definition 2. The
function θt : Rt+1 → Vt is an r(t)-bit quantization of the
information that is available at the supplier until iteration t,
i.e., the values of the dual gradients D′(p(0)), . . . , D′(p(t)).
We wish to find the quantization scheme (p(0), θt(·)) ∈ QP
that produces the “best” algorithm:3

xi(t) =
[
(U ′i)

−1(p(t))
]Mi

mi
, (6a)

∆(t) =θt(D
′(p(0)), . . . , D′(p(t))), (6b)

p(t+1) = [p(t)−∆(t)]
P
0 , (6c)

for t ∈ N0, to solve the resource allocation problems from
the class Rµ,N,P . In Equation (6c), we can project the dual

3Since θt(·) is a general function ∆(t) can represent a quanitized version
of the the gradient step in Equation (5c) with the step-size γ(t).
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iterates to the set [0, P ] because [0, P ] contains an optimal
dual variable, see Lemma 5 in Appendix A. We will use the
notation xqR(t) and pqD(t) to denote the iterates in Equation (6)
when the quantization scheme q ∈ QP is used to solve the
problems R ∈ Rµ,N,P and D ∈ DL,P , respectively. For
each quantization scheme (p(0), θt(·)), the algorithm can be
implemented using the following steps (see also Figure 1).

ONEWAY-DD: One-way communication dual decomposition

Step 1 Each user i ∈ N :
(A) updates its consumption xi(t) [see Eq. (5a)].

Step 2 The Supplier:
(B) measures D′(p(t)) [see Eq. (5b)],
(C) quantizes the information in [D′(p(i))]i=0,...,t

into ∆(t) [see Eq. (6b)],
(D) encodes ∆(t) : ∆̄(t)=Encoder(∆(t)),
(E) broadcasts ∆̄(t) using r(t) bit message through

the communication channel.
Step 3 Each user i ∈ N :

(F) receives the encoded message ∆̄(t),
(G) decodes ∆̄(t): ∆(t) = Decoder(∆̄(t)),
(H) updates the dual variable p(t+1) [see Eq. (6)].

Remark 2. In the studied algorithms, the message p(t) that
is communicated from the supplier can be updated arbitrar-
ily, since the quantizations θt(·) can be arbitrary functions.
However, the local decisions of the users in Equation (6a)
are chosen to optimize the local subproblem in Equation (5a),
following the dual decomposition algorithm in Equation (5).
Therefore, the decision of the users cannot be chosen arbi-
trarily and it is possible that the complexity bounds in this
paper can be improved if this assumption is relaxed, i.e.,
if xi(t) = Ki

t(p(0), . . . , p(t)) where Ki
t(·) is an arbitrary

function.

To find the “best” quantization scheme from QP we now
introduce the concept of communication complexity in our
resource allocation setting.

C. Communication Complexity

In this paper, we study the communication complexity
of distributed resource allocation optimization problems by
seeking answers to the following questions.

i) What are the fewest number of communicated bits needed
to obtain an optimal allocation with a given accuracy?

ii) What is the best solution accuracy that can be achieved
given a fixed number of communicated bits?

To answer Question i) we introduce the notation of ε-
communication-complexity, or in short ε-complexity. Before
giving a formal definition, we introduce some notation. We
say that the primal variable x is an ε-optimizer of the primal
problem R = (U, C,m,M) ∈ Rµ,N,P if ||x − x?R|| ≤ ε
where x?R is the optimal solution of the primal problem (1).
Similarly, we say that the dual variable p is an ε-optimizer
to the dual problem D ∈ DL,P if dist(p,P?D) ≤ ε where

P?D is the set of optimal dual solutions.4 We need to quantify
how many iterations it takes to obtain an ε-optimizer for each
q = (p(0), θt(·)) ∈ QP . For that purpose we consider the
following quantities

T Prim(q,R, ε) = min
{
t ∈ N0

∣∣||xqR(t)− x?P || ≤ ε
}
,

TDual(q,D, ε) = min
{
t ∈ N0

∣∣dist(pqD(t),P?D) ≤ ε
}
,

for R ∈ Rµ,N,P , D ∈ DL,P , q = (p(0), θt(·)) ∈ QP , and
ε ∈ R+. We then define the ε-complexity as follows.

Definition 4 (ε-Complexity). For ε ∈ R+, the ε-complexity
of the resource allocation problems Rµ,N,P and the dual
problems DL,P using the quantization schemes Q̄ ⊆ QP is

EPrim
µ,N,P (Q̄, ε) :=min

q∈Q̄
max

R∈Rµ,N,P

T Prim(q,R,ε)∑
t=0

rq(t),

EDual
L,P (Q̄, ε) :=min

q∈Q̄
max

D∈DL,P

TDual(q,D,ε)∑
t=0

rq(t),

where rq(t) is the communication rate at iteration t of the
quantization scheme q. We call the quantization schemes that
solve the above problems optimal quantization schemes.

The ε-complexities EPrim
µ,N,P (Q̄, ε) and EDual

L,P (Q̄, ε) measure the
fewest number of communicated bits needed to find an ε-
optimizer of the most “difficult” problems from the classes
Rµ,N,P and DL,P , respectively, using the quantization scheme
Q̄ ⊆ QP .

To answer Question-ii), we introduce the notation of b-
communication-complexity, or just b-complexity. We need the
following quantity

T (q, b) := min

{
T ∈ N0

∣∣∣∣∣
T−1∑
t=0

rq(t) ≤ b <
T∑
t=0

rq(t)

}
,

where we define
∑T−1
t=0 rq(0) = 0. The quantity T (q, b) maps

the quantization scheme q ∈ QP and the number bits b ∈ N0 to
number of iterations that are attained when b bits are transfered
using the quantization scheme q.

Definition 5 (b-Complexity). For b ∈ N, the b-complexity
of the resource allocation problems Rµ,N,P and the dual
problems DL,P using the quantization schemes Q̄ ⊆ QP is

BPrim
µ,N,P (Q̄, b) :=min

q∈Q̄
max

R∈Rµ,N,P
||xqR(T (q, b))− x?R||,

BDual
L,P (Q̄, b) :=min

q∈Q̄
max

D∈DL,P
dist(pqD(T (q, b)),P?D),

We call the quantization schemes that minimize the upper
bounds above optimal quantizers.

The b-complexity measures the best possible solution accuracy
that can be achieved from communicating b bits in total.

4Since the utility function in the primal problem is strongly concave, the
optimal solution is unique. Still, there can be multiple optimal dual solutions.
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III. COMMUNICATION COMPLEXITY OF
RESOURCE ALLOCATION OPTIMIZATION PROBLEMS

We now find the general communication complexity of
the resource allocation problems in Section II. That is the
communication complexity when there are no restrictions on
the quantization scheme, i.e., all quantization schemes in QP
are considered. We start by providing the exact complexity in
Section III-A. Then in Sections III-B and III-C, we illustrate
how the communication complexity is obtained by identifying
tight lower and upper bounds, respectively.

A. General Communication Complexity

The general communication complexity is given in the
following theorem.

Theorem 1. Set L = N/µ, then

EPrim
µ,N,P (QP , ε) =B1(ε) := log2

⌈
P
√
N

2µε

⌉
bits, (7a)

EDual
L,P (QP , ε) =B2(ε) := log2

⌈
P

2ε

⌉
bits, (7b)

BPrim
µ,N,P (QP , b) =

P
√
N

µ2b+1
, (7c)

BDual
L,P (QP , b) =

P

2b+1
. (7d)

Proof. The proof follows from Lemmas 1 and 2.

The results of the theorem are obtained by providing lower
bounds and equal upper bounds on the communication com-
plexities. The lower bound is obtained by finding, for each
quantization scheme q ∈ QP , the most difficult primal and
dual problems from Rµ,N,P and DL,P for the quantization q.
On the other hand, the upper bound is obtained by finding
a particular good quantization that achieves the lower bound.
We demonstrate this process in the following two sections.

B. General Lower Bounds

We now provide lower bounds on the general communica-
tion complexity. The lower bound is obtained by constructing
particular primal and dual problems that are difficult for each
quantization. To construct these difficult problems, we build
on the following example.

Example 1. Consider the following primal Problem (1) from
the class Rµ,N,P whose associated dual problem is in the
class DL,P . Set mi = 0 and Mi = M := PL/N for all
i ∈ N . Set Ui(xi) = − N

2L (xi −M)2, for all i ∈ N . Then
in view of Equation (5a) we have xi(p) = [U ′i ]

−1(p) =
M − (L/N)p, for all p ∈ [0, P ], and the dual function and
its gradient are

D(p) =
L

2
p2 + (C −MN)p, for all p ∈ [0, P ] (8)

D′(p) =Lp+ (C −MN), for all p ∈ [0, P ]. (9)

The optimal solution to the dual problem is p? = (MN −
C)/L. Therefore, given C ∈ [0, NM ] the optimal primal/dual
solutions are x?i (C) = C/N and p?(C) = (MN − C)/L.

For each quantization scheme q ∈ QP we can find an
instance of Example 1 that is particularly difficult for q. In
particular, after b bits have been communicated using some
quantization q ∈ QP , the dual iterates p(t) can take at most
one of 2b values in [0, P ]. Therefore, we can find an instance
of Example 1 that has a dual optimal solution p? ∈ [0, P ] that
is as far away as possible from all the potential 2b values of
p(t). This intuition is now formalized to get the desired lower
bound.

Lemma 1 (Lower Bound). Suppose L = N/µ. Then for every
quantization scheme q ∈ QP , the following holds:
a) ε-complexity: For every ε > 0, there exists a primal

problem R ∈ Rµ,N,P and an associated dual problem
D ∈ DL,P such that

||xqR(T (q, b))− x?R|| >ε for all b < B1(ε) (10a)
dist(pqD(T (q, b)),P?D) >ε for all b < B2(ε), (10b)

where B1(ε) and B2(ε) are defined in Equations (7a)
and (7b), respectively.

b) b-complexity: For every b ∈ N0 there exists a primal
problem R ∈ Rµ,N,P and an associated dual problem
D ∈ DL,P such that

P
√
N

µ2b+1
<||xqR(T (q, β))− x?R|| for all β < b, (11a)

P

2b+1
<dist(pqD(T (q, β)),P?D) for all β < b. (11b)

Proof. a) Given a quantization scheme q ∈ QP . Take some
T ∈ N0 and denote by AT ⊆ [0, P ] the set of all possible
outcomes of p(T ) ∈ [0, P ], that is

AT =
{
pqD(t) ∈ [0, P ]

∣∣D ∈ DL,P and t = T
}
.

We have the following bound on the cardinality of AT

|AT | ≤ 2
∑T−1
t=0 rq(t),

since
∑T−1
t=0 rq(t) binary signals have been transfered at

iteration T .
We first prove Equation (10a), by showing that if

|AT | < 2B1(ε) =

⌈
P
√
N

2µε

⌉
, (12)

then there exists R ∈ Rµ,N,P such that ||xR(p)−x?R|| > ε for
all p ∈ AT . From Lemma 7 in Appendix A and Equation (12),
there exists p? ∈ [0, P ] such that |p − p?| > µε/

√
N for all

p ∈ AT . Let R ∈ Rµ,N,P be the primal problem given in
Example 1 with C = MN − p?L. We have xi(p) = M −
(L/N)p for all p ∈ [0, P ]. Therefore, for all p ∈ AT we have

||xR(p)− x?R|| =

√√√√ N∑
i=1

(xi(p)− x?i )2 =

√
L2

N
(p− p?)2

=
L√
N
|p− p?| > L√

N

µε√
N

= ε,

where the inequality comes from Lemma 7 and that L = N/µ.
We can now prove Equation (10b) by showing that if
|AT | < 2B2(ε) = dP/(2ε)e, then there is D ∈ DP,L such
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that dist(p,P?D) > ε for all p ∈ AT . Since |AT | < dP/(2ε)e,
it follows from Lemma 7 that there exists p? ∈ [0, P ] such
that |p − p?| > ε for all p ∈ AT . Let D ∈ DL,P be the
dual problem given in Example 1 with C = MN − p?L.
Then p? is the unique optimal solution of D. Therefore,
dist(p,P?) = |p− p?| > ε for all p ∈ AT .

b) The proof follows similar arguments as the proof of
Lemma 1-a). Let the quantization scheme q ∈ QP and β < b
be given. Similarly as before, consider a subset Aβ ⊆ [0, P ]
of all possible outcomes of p(T (q, β)) ∈ [0, P ]. Since β bits
have been communicated we have that

|Aβ | = 2β < 2b =

⌈
P

2δ

⌉
, where δ = P/2b+1.

Therefore, by Lemma 7 in Appendix A there exists p? ∈ [0, P ]
such that |p− p?| > δ for all p ∈ Aβ . The proof now follows
the same steps as used to prove parts a), where we use the
primal problem given in Example 1 with C = MN − p?L
and the associated dual problem to obtain Equations (11a)
and (11b).

As shown in the proof, the lower bound is obtained by con-
structing specific primal and dual problems that are difficult
for each quantization scheme. We now show that these lower
bounds are tight by providing matching upper bounds.

C. General Upper Bounds

We now provide upper bounds on the general communica-
tion complexity. The upper bounds are obtained by construct-
ing a particular quantization scheme that performs well for
all primal and dual problem. In particular, we consider the
following quantization scheme.

Lemma 2 (Upper Bound). Consider the quantization scheme
q = (p(0), θt(·)) ∈ QP given by

p(0) = P/2, (13a)

θt(d0, . . . , dt) =

{
P/2t+2 if dt ≥ 0

−P/2t+2 if dt < 0
for t ∈ N. (13b)

Then for all R ∈ Rµ,N,P and D ∈ DL,P , where L = N/µ,
following holds:

||xqR(T (q, b))− x?R|| ≤ε if b ≥ B1(ε) for all ε > 0, (14a)
dist(pqD(T (q, b)),P?D) ≤ε if b ≥ B2(ε) for all ε > 0, (14b)

and

||xqR(T (q, b))− x?R|| ≤
P
√
N

µ2b+1
for all b ∈ N0, (15a)

dist(pqD(T (q, b)),P?D) ≤ P

2b+1
for all b ∈ N0. (15b)

Proof. We start by showing that for the quantization scheme
q in Equation (13) and any D ∈ DL,P we have

dist(pqD(t),P?D) ≤ P

2t+1
, for all t ∈ N0. (16)

We separately consider the two cases: 1) there exists p? ∈
[0, P ] such that D′(p?) = 0 and 2) no such p? exists in [0, P ].

Case 1: We prove by induction that for all t ∈ N0 there is

p? ∈ It :=

[
p(t)− P

2t+1
, p(t) +

P

2t+1

]
such that D′(p?) = 0 hence p? ∈ P?D (due to convexity of
D(·)) yielding Equation (16).5 The result holds for t = 0
since I0 = [0, P ] and we have already assumed that there
exists p? ∈ [0, P ] such that D′(p?) = 0.

Suppose now that the result holds for some t ≥ 0, i.e., there
exists p? ∈ It such that D′(p?) = 0. We prove that the result
then also holds for t + 1 by considering separately the two
cases in Equation (13b), when dt = D′(p(t)) ≥ 0 and when
dt = D′(p(t)) < 0. Consider first the case when D′(p(t)) ≥ 0.
By inserting the quantization scheme in Equation (13) into the
general algorithm in Equation (6) we have that p(t + 1) =
p(t)− P/2t+2, which yields

It+1 =

[
p(t)− P

2t+1
, p(t)

]
.

If p? ∈ It+1 then we are done, so let us suppose that
p? > p(t). Then by using that D′(·) is a monotone increas-
ing function (because of the convexity of D(·)) we have
D(p(t)) ≤ D′(p?) = 0. This together with the fact that
0 ≤ D(p(t)) shows that D′(p(t)) = 0 which yields the result,
since p(t) ∈ It+1. The case when dt = D′(p(t)) < 0 can be
proved similarly. In particular, Equations (13) and (6) yield
that

It+1 =

[
p(t), p(t) +

P

2t+1

]
.

The monotonicity of D′(·) implies that D′(p) < D′(p(t)) < 0
for all p < p(t). Hence, we can conclude that p? ∈ It+1

yielding the result.
Case 2: Note that P?D = {0}, since the set P?D is nonempty

by Lemma 5-b) and D′(p?) 6= 0 only if the optimal solution is
at the boundary of the feasible set R+, i.e., p? = 0. Moreover,
by the KKT conditions (see [28, Chapter 5]) we must have
D′(0) > 0. Therefore, from the monotonicity of D′(·) we
have D′(p) > 0 for all p ∈ [0, P ]. As a result, by Equations
(6) and (13) the algorithm reduces to p(t) = P/2t+1 which
together with the fact that p? = 0 yields Equation (16).

We can now prove Equation (14a). Given a R =
(U, C,m,M) ∈ Rµ,N,P , set xR(p) = (x1(p), . . . , xN (p))
where xi(p) = [(U ′i)

−1(p)]Mi
mi [cf. Equation (5a)]. Then the

function xi(p) is 1/µ Lipschitz continuous. This follows from
the fact that (U ′i)

−1(p) is 1/µ Lipschitz continuous [29,
Equation (2.1.20)] and from the non-expansive property of the
projection [·]Mi

mi [30, Proposition B.11 (c)]. Therefore, for all

p? ∈ P? we have ||xR(p)− x∗R|| =
√∑N

i=1(xi(p)− x?i )2 ≤
√
N
µ |p− p

?|, and

||xqR(t)− x∗R|| ≤
√
N

µ
min
p?∈P?

|p(t)− p?| ≤
√
N · P

µ · 2t+1
. (17)

As a result, ||xqR(t) − x∗R|| ≤ ε for all t ∈ N0 such that
t ≥ log2

(√
NP

2µε

)
.

5This is equivalent to showing that the quantization scheme reduces to a
bisection method for finding a root of the function D′(·) on the interval [0, P ].
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Equations (14b), (15a), and (15b) follow by rearranging
Equations (16) and (17).

In the optimal quantization scheme in Lemma 2 only one
bit of information is communicated per iteration and hence
T (q, b) = t. Moreover, the optimal quantizers θt(d0, . . . , dt)
do not rely on the parameters µ,N,L or on any history infor-
mation, since θt(d0, . . . , dt) only depends on dt. However, we
will need to use history information to generate optimal primal
feasible quantization schemes, which are studied in Section IV.

This fast convergence rate of the upper bound of the
dual iterates in Equation (15b) of Lemma 2 might look too
good. In fact, it is better than the best possible convergence
rate for general gradient methods when minimizing convex
functions with Lipschitz continuous gradients, see Theorem
2.1.7 in [29]. However, in the proof we have exploited the
fact that the dual problem is one-dimensional to achieve the
convergence rate; whereas the lower bounds in [29] hold for
multi-dimensional problems. In fact, it can be verified that
the optimal quantization scheme in Lemma 2 is equivalent to
searching for the optimal dual variable (or a root of D′(·)) via
the bisection method (see the proof for details). This explains
the linear convergence rate, since at every iteration the search
space is halved.

IV. PRIMAL FEASIBLE QUANTIZATION SCHEMES

When implementing the resource allocation algorithms from
Section II-B in physical systems, it is essential that primal
feasibility is ensured at each iteration. Otherwise, if primal
feasibility is not ensured, then users may consume more
resource than is available and overload the system. This is
unacceptable because it causes blackouts in power networks,
or outages in wireless networks. This motivates the following
study of Primal-Feasible (PF) quantization schemes.

A. Primal Feasible (PF) Quantization Schemes

We are interested in the subset of all quantization schemes
q ∈ QP that ensure the feasibility of the primal iterates at
every iteration and for all primal problems in Rµ,N,P . Such
quantization schemes are formally defined as follows.

Definition 6 (Primal Feasible (PF) Quantization Schemes). We
say that the quantization scheme q ∈ QP is Primal Feasible
(PF), with respect to the problem class Rµ,N,P , if for every
R = (U, C,m,M) ∈ Rµ,N,P the iterates xqR(t) are feasible
to the problem R for all t ∈ N0. That is

N∑
i=1

xqi,R(t) ≤ C for all t ∈ N0,

where xqR(t) = (xq1,R(t), . . . , xqN,R(t)). We denote by QPF
µ,N,P

the set of all PF-quantization schemes with respect to Rµ,N,P .

PF-quantization schemes are practically desirable since they
ensure that the users do not overuse the resources as the
algorithm runs. However, it is still unclear how to how
to design such quantization schemes. The following result
demonstrates a key sufficient condition used later to design
PF-quantization schemes.

Theorem 2. Set L = N/µ. If p(0) = P and the following
inequality holds for all t ∈ N0

θt(d0, . . . , dt) ≤
1

L
dt, for all dt ≥ 0, (18)

then (p(0), θt(·)) ∈ QPF
µ,N,P .

Proof. See Appendix B-A.

The theorem provides us with an easy-to-use design mecha-
nism to produce PF-quantization schemes. Moreover, the first
condition of the theorem, that p(0) = P , necessarily holds for
all PF-quantization schemes.

Proposition 1. A quantization scheme (p(0), θt(·)) ∈ QP is
not a PF-quantization if p(0) ∈ [0, P ).

Proof. See Appendix B-B.

B. Communication Complexity of PF-Quantization Schemes

We now study the communication complexity of PF-
quantization schemes. We present the main results in this
section, but leave many details to Sections IV-C and IV-D
and to Appendix B.

When considering the communication complexity of PF-
quantization schemes, the following complexity measure will
be useful in addition to those defined in Section II-C.6

Definition 7. For each ε > 0, b ∈ N, and a quantization class
Q̄ ⊆ QP , consider the following quantities

EDualObj
L,P (Q̄, ε) =min

q∈Q̄
max

D∈DL,P

TDualObj(q,D,ε)∑
t=0

rq(t)

BDualObj
L,P (Q̄, b) =min

q∈Q̄
max

D∈DL,P
D(pqD(T (q, b)))−D?.

where TDualObj(q,D, ε)= min
{
t ∈ N0

∣∣D(pqD(t))−D? ≤ ε
}

and D? is the optimal value of the dual problem.

The measures EDualObj
L,P (Q̄, ε) and BDualObj

L,P (Q̄, b) are the same
as the ε- and b-complexities defined in Section II-C, except
they use the optimality criterion D(p)−D?.

Because of the primal feasibility requirement, it is difficult
to reduce the communication complexity of PF-quantization
schemes to a single number, as we did for general quantization
schemes in Section III. We start by giving lower bounds. For
that purpose we use the following big-Ω notation:

Ω(g(b)) = {h : N→ R |Bg(b) ≤ h(b) for all b ≥ b0
and some b0 ∈ N and B ∈ R+}.

Informally, h(b) ∈ Ω(g(b)) means that the function h(b)
dominates g(b) up to some constant factor, for large enough
b. We now provide lower bounds on the b-complexity for PF-
quantization schemes.

6The reason for considering this complexity here but not in Section III is
that it is needed to derive the complexity results for the primal iterates.
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Theorem 3 (PF-Lower Bound Complexity). For k ∈ N
with k ≥ 4 we have the following lower bounds on the b-
complexity:

BPrim
µ,N,P (QPF

µ,N,P , b) ∈Ω
(

1
/
b

k
k−1

)
(19a)

BDual
L,P (QPF

µ,N,P , b) ∈Ω (1) (19b)

BDualObj
L,P (QPF

µ,N,P , b) ∈Ω
(

1
/
b
k+1
k−1

)
. (19c)

Proof. See Appendix B-C.

Equations (19a)-(19c) give a lower bound on the conver-
gence rate of the three b-complexities. For example, Equa-
tion (19b) shows that there exists a constant K > 0 such that
for any PF-quantization q and any b ∈ N, we can find a dual
problem D ∈ DL,P such that dist(pqD(T (q, b)),P?D) ≥ K.
Similarly, Equation (19a) shows that for any PF-quantization
q there exists a primal problem R ∈ Rµ,N,P such that the opti-
mality criterion ||xqR(T (q, b))−x?R|| converges at a rate that is
at best proportional to 1

/
b

k
k−1 . Equation (19c) shows similar

behaviour for the optimality criterion D(pqD(T (q, b)))−D?.
Theorem 3 also shows that the complexity measures

BPrim
µ,N,P (QPF

µ,N,P , b) and BDualObj
L,P (QPF

µ,N,P , b) cannot be upper
bounded by a function of the form g(b) = C/ba where a > 1
and C ∈ R+. To formally assert this result we consider the
following big-O notation.

O(g(b)) = {h : N→ R |h(b) ≤ Bg(b) for all b ≥ b0
and some b0 ∈ N and B ∈ R+}.

Informally, h(b) ∈ O(g(b)) means that the function h(b) is
dominated by g(b) up to some constant factor, for large enough
b. We have the following consequence of Theorem 3.

Corollary 1. For all a > 1 we have BPrim
µ,N,P (QPF

µ,N,P , b) /∈
O (1/ba) and BDualObj

L,P (QPF
µ,N,P , b) /∈ O (1/ba).

Proof. See Appendix B-D.

The result in the corollary clearly also holds for the com-
plexity measure BDual

L,P (QPF
µ,N,P , b), because of Equation (19b)

in Theorem 3. Corollary 1 shows that for any PF-quantization
scheme the convergence rate of the quantities ||x(T (q, b)) −
x?|| and D(p(T (q, b)))−D? as they approach zero, can be no
better than O(1/b). We now provide big-O upper bounds on
both the b- and ε-complexities. For the ε-complexity, we need
the following big-O notation that describes the convergence
behaviour when ε is close to 0.

O0(g(ε)) = {h : N→ R |h(ε) ≤ Bg(ε) for all ε ∈ [0, ε0]

and some ε0 > 0 and B ∈ R+}.
Informally, h(ε) ∈ O(g(ε)) means that the function h(ε) is
dominated by g(ε) up to some constant factor for small enough
ε. We have the following upper bounds on the communication
complexity.

Theorem 4 (PF-Upper Bound Complexity). We have the
following upper bounds on the ε-complexity:
EPrim
µ,N,P (QPF

µ,N,P , ε) ∈O0

(
1
/
ε2
)

(20a)

EDual
L,P (QPF

µ,N,P , ε) =∞ for all ε < P (20b)

EDualObj
L,P (QPF

µ,N,P , ε) ∈O0

(
1
/
ε
)
. (20c)

We have the following bounds on the b-complexity:

BPrim
µ,N,P (QPF

µ,N,P , b) ∈O
(

1
/√

b
)

(21a)

BDual
L,P (QPF

µ,N,P , b) ∈O (1) (21b)

BDualObj
L,P (QPF

µ,N,P , b) ∈O
(
1
/
b
)
. (21c)

Proof. See Appendix B-E.

The upper bound in Equations (20a) and (20c) show that
there exists a PF-quantization scheme q that can find primal
and dual variables x and p such that ||x − x?|| ≤ ε and
D(p) −D? ≤ ε by using number of bits that is proportional
to 1/ε2 and 1/ε, respectively, for small enough ε. Similarly,
the upper bound in Equations (21a) and (21c) show that there
exists a PF-quantization scheme q such that the accuracy of
the primal iterates ||x(T (q, b)) − x?|| and the dual objective
function D(p(T (q, b))) − D? converge to zero at a rate
proportional to 1/

√
b and 1/b, respectively, as the number of

bits b diverges to infinity. On the other hand, the upper bounds
in Equations (20b) and (21b) on the accuracy of the dual
iterates dist(p(t),P?) are less promising. They show that the
dual iterates p(t) can converge at an arbitrarily slow rate to p?.
This is consistent with the fact that iterates of gradient methods
can converge at an arbitrarily slow rate to an optimal solution
when minimizing convex functions with Lipschitz continuous
gradients, while the objective function can converge at the rate
O(1/t2) [29, Theorem 2.1.7].

These results illustrate a trade-off between ensuring primal
feasibility and the convergence rate. To ensure primal feasibil-
ity, the convergence rate of the quantity ||x(T (q, b))−x?|| can
be no better than O(1/b), as showed in Corollary 1. On the
other hand, when there are no primal feasibility requirements
then the convergence rate of ||x(T (q, b)) − x?|| is O(1/2b),
as proved in Section III.

C. Lower Bounds for PF-Quantization Schemes

To prove the lower bounds in Theorem 3 we use the
following result.

Lemma 3. Take P ∈ R+, µ > 0, N ∈ N, and L = N/µ.
Then for every k ∈ N with k ≥ 4 there exists a primal problem
Rk ∈ Rµ,N,P and an associated dual problem Dk ∈ DL,P
such that the following holds for all q ∈ QPF

µ,N,P :

||xqRk(t)− x?Rk || ≥
P
√
N

kµ

(
1

1 + 2(t+1)

) k
k−1

, (22a)

dist(pqDk(t),P?Dk) ≥ P
(

1

1 + 2(t+1)

) 1
k−1

, (22b)

D(pqDk(t))−D?
k ≥ (Dk(p(0))−D?

k)

(
1

1+2(t+1)

) k+1
k−1

. (22c)

Proof. See Appendix B-F.

Note that the lower bounds in Equations (22a)-(22c) are
given in number of iterations t, not in number of bits b.
Therefore, it does not matter how many bits are communicated
per iteration, these lower bound always hold. In particular,
since at least one bit is communicated at each iteration (see
Remark 1), t can be replaced by the number of bits b.
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Lemma 3 holds even when no quantization is done, i.e.,
for standard dual gradient methods. Therefore, these results
also show a trade-off between ensuring primal feasibility and
convergence rate of standard dual gradient methods when dual
gradient information is used. When ensuring primal feasibility,
the best convergence rate of D(p(t))−D? that can be achieved
is O(1/t).7 However, if primal feasibility is not required, the
literature shows that gradient methods that minimize general
convex dual functions D with Lipschitz continuous gradient
can have the convergence rate O(1/t2) [29, Chapter 2].
Moreover, for the dual problem studied in this paper a linear
convergence can be ensured, as proved in Section III.

D. Upper Bounds for PF-Quantization Schemes

The proof of Theorem 4 is obtained by using the following
PF-quantization scheme.

Lemma 4. Consider the quantization scheme q =
(p(0), θ(·)) ∈ QP with p(0) = P , and

Q0 =P, (23a)

θt(d0, . . . , dt) =

{
0 if dt < QtL

Qt if dt ≥ QtL
(23b)

Qt+1 =

{
Qt
2 if dt < QtL

Qt if dt ≥ QtL.
(23c)

Then q ∈ QPF
µ,N,P . Moreover, for all R ∈ Rµ,N,P and D ∈

DL,P , where L = N/µ, the following holds:

||xqR(t)− x?R|| ≤
4
√
NP

µ
√
t

for all t ≥ 1, (24a)

D(pqD(t))−D? ≤ 16LP 2

t
for all t ≥ 1. (24b)

Proof. See Appendix B-G

The number of iterations t can be replaced by the number
of bits b, since the quantization scheme uses 1 bit per iteration.
With the quantization scheme in Lemma 4, the algorithm in
Equation (6) takes the gradient step ∆(t) = Qt provided that
Qt ≤ D′(pqD(t))/L, which ensures primal feasibility because
of Lemma 2. Otherwise, if primal feasibility cannot be assured
with the step Qt then ∆(t) = 0 and Qt is halved, i.e., Qt+1 =
Qt/2. A key property of this quantization that is used to prove
the lemma is that every time a step is taken, i.e., when ∆(t) =
Qt, then the step length is proportional to D′(pqD(t))/L (See
Equation (37) in the proof of Lemma 4).

V. NUMERICAL STUDIES

A. Proportionally Fair Power Allocation in Micro Grids

Consider a power supplier in a micro grid with the task of
supplying N users (or devices) with C units of power. Denote
by di > 0 and xi ∈ [0, di], respectively, the power demand
and the actual power allocation of user i = 1, . . . , N . The
supplier’s task is to allocate the power in an efficient and a
proportionally fair manner [1], [31]–[34]:

7This can be proved by following the steps in the proof of Corollary 1.
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(b) Feasibility of the iterates

Fig. 2: Convergence behaviour of the quantization schemes
in Lemma 2 (G-Q) and Lemma 4 (PF-Q) for solving Prob-
lem (25): (a) shows the primal iterates and (b) the feasibility
of the primal iterates as a function of communicated bits.

Definition 8. A power allocation x? ∈ RN is proportionally
fair if there exists γ ∈ [0, 1] such that (di − x?i )/di = γ, for
i = 1, . . . , N . A power allocation x? ∈ RN is efficient if
either x?i = di for all i = 1, . . . , N or

∑N
i=1 x

?
i = C.

In other words, a power allocation is proportionally fair if
the deviation of the power allocation of each user from its de-
mand is proportionally the same. Similarly, a power allocation
is efficient if either the demand of every user is satisfied or the
power is used up. An efficient and a proportionally fair power
allocation can be found by solving the following optimization
problem (see Lemma 8 in Appendix A)

maximize
x1,··· ,xN

U(x) :=

N∑
i=1

− 1

2di
(di − xi)2

subject to
N∑
i=1

xi ≤ C,

xi ∈ [0, di],

(25)

Fig. 2 plots the results of solving Problem (25) when N =
40, C = 160, and di is taken uniformly at random from the
interval [5, 15], for each i = 1, . . . , N . This problem is in the
class Rµ,N,P where µ = 1/15 and P = 1. Therefore, the dual
problem is in the class DL,P where L = 15N . To solve this
problem, we use the general quantization scheme in Lemma 2
indicated by G-Q (red curves marked with a filled triangle) and
the primal feasible quantization scheme in Lemma 4 indicated
by PF-Q (blue curves marked with a filled square).

Fig. 2a shows the convergence of the primal iterates as
a function of the number of communicated bits. The upper
bounds on the quantization schemes G-Q and PF-Q in Lem-
mas 2 and 4, respectively, are demonstrated by the black
dashed and dotted lines. The figure shows that the convergence
is faster for G-Q than for PF-Q. However, as shown in
Figure 2b, for G-Q, the primal variables are infeasible at
some iterations of the algorithm, which in practice could cause
a blackout in the micro grid. On the other hand, for PF-
Q, the primal iterates are feasible at every iteration of the
algorithm, which is not surprising since PF-Q is a primal
feasible quantization scheme (see Definition 6 and Lemma 4
in Section IV). Therefore, G-F achieves fast convergence at
the cost of the security of the micro grid.
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Fig. 3: Convergence behaviour of the quantization schemes in
Lemma 4 (PF-Q) for solving the problem in Example 2: (a)
shows the primal iterates and (b) the dual iterates as function
of communicated bits.

B. Extreme Example

Figure 3 illustrates the results of using the PF-quantization
scheme in Lemma 4 when solving the problem given in
Example 2 in Appendix B-F when P = L = 1, N = 40,
α = 0, and k = 10, 20, 50. The convergence of the primal
and dual iterates are, respectively, illustrated in Figure 3a
and Figure 3b. The dotted lines illustrate upper bounds on
the convergence, the upper bound in Figure 3a comes from
Lemma 4 and the upper bound in Figure 3b is obtained from
that dist(p,P?) ≤ P for all p ∈ [0, P ]. The dashed lines
illustrate lower bounds on the convergence obtained from
Lemma 3. In Figure 3a, we have only plotted the smallest
lower bound achieved when k = 50, since the lower bounds
for k = 10, 20 are all in similar range.

Figure 3a shows that the primal iterates are upper and lower
bounded by sequences A1/

√
b and A/bk/(k−1), respectively,

for some constants a A1, A2 ∈ R+ and k = 10, 20, 50.
Since the lower bound can be achieved for any k ≥ 4, these
results show that the convergence rate of the primal iterates
can be no better than O(1/b), as we proved in Section III-B.
Figure 3b shows that the convergence of the dual iterates gets
slower as k increases. This shows why the communication
complexity of finding approximately optimal dual variables p
with respect to the optimality measure dist(p,P?) is so bad,
e.g., EDual

L,P (QPF
µ,N,P , ε) =∞ for ε < P in Theorem 4.

VI. CONCLUSIONS

This paper studies the communication complexity of re-
source allocation problems. The results show that for the con-
sidered problem class the number of bits needed to find an ε
solution accuracy grows proportionally to log2(1/ε). Similarly,
the smallest solution accuracy that can be found when b bits
are used decreases proportionally to 1/2b. We also consider
the communication complexity for a stricter communication
model that allows only algorithms that ensure the problem’s
feasibility at every iteration. This restriction is motivated by
the fact that resource allocation algorithms are often executed
online, where the users consume the resources while the
algorithm is running; for example, rate allocation in wireless
networks. Therefore, if the users consume more resources than
available, then they can overload the system, which could,
e.g., cause blackouts in power grids. With this feasibility

requirement, we show that the best possible convergence rate
of the solution accuracy is proportional to 1/b, where b is the
number of communicated bits. Therefore, the results illustrate
a trade-off between feasibility and fast convergence. Future
work will consider limited communication algorithms for more
general resource allocation problems and dynamic networks
with variable number of users and resources.

APPENDIX A
IMPORTANT LEMMAS

Lemma 5. For all (U, C,m,M) ∈ Rµ,N,P and the as-
sociated dual function D, the following holds: a) has L-
Lipschitz continuous gradient, where L = N/µ, and b) The
dual Problem (2) has an optimal solution in the interval [0, P ].

Proof. a) See Lemma II.2 in [4].
b) Strong duality holds between the primal Problem (1)

and the dual Problem (2), see [13, Lemma 1]. Therefore,
D has an optimal solution p? ∈ R+. We now prove that
if p? ≥ P then P is also an optimal solution to (2). Since
P ≥ maxi∈N U

′
i(mi), we have P ≥ U ′i(mi) for all i ∈ N .

Then mi ≥ (U ′i)
−1(P ) for all i ∈ N since (U ′i)

−1(·) is a
decreasing function, due to the concavity of Ui and the fact
that the inverse of decreasing function is decreasing. Then
xi(P ) = [(U ′i)

−1(P )]Mi
mi = mi and hence xi(p) = mi for

p ≥ P , since (U ′i)
−1(·) is decreasing. Therefore, if p? ≥ P

then P is an optimal solution to (2). So D must have an
optimal solution in [0, P ].

Lemma 6. Consider the primal and dual problems (1) and (2).
Let P? = [p?, p̄?] be the set of dual optimizers. Then for
p ∈ R+, the following three conditions are equivalent: a)
(xi(p))i∈N is primal feasible, b) D′(p) ≥ 0, and c) p ≥ p?.

Proof. a)⇐⇒ b): D′(p) = C −
∑N
i=1 xi(p) from Equa-

tion (5b). Therefore, if D′(p) < 0 then C <
∑N
i=1 xi(p) and

if 0 ≤ D′(p) then
∑N
i=1 xi(p) ≤ C.

b)⇐⇒ c): For p? ∈ P? then D′(p?) = 0 if p? > 0 and
D′(p?) ≥ 0 if p? = 0. Therefore, if p ≥ p? then D′(p) ≥
D′(p?) ≥ 0, because D′(·) is increasing since D is convex.
Similarly, if p ∈ R+ and p < p? then D′(p) < D′(p?) = 0,
since 0 < p?.

Lemma 7. Let A be a subset of the interval [0, P ] with the
cardinality |A| < dP/(2δ)e for some δ > 0. Then there exists
p̄ ∈ [0, P ] such that |p− p̄| > δ for all p ∈ A.

Proof. Suppose that A ⊆ [0, P ] with |A| < dP/(2δ)e. Then
2δ|A| < P so the intervals [p− δ, p+ δ] for all p ∈ A do not
cover the interval [0, P ]. Therefore, there exist p̄ ∈ [0, P ] such
that p /∈

⋃
p∈P [p− δ, p+ δ].

Lemma 8. The unique optimal solution x? of Problem (25)
is efficient and proportionally fair power allocation.

Proof. Consider first the case when
∑N
i=1 di ≤ C. Then

x?i = di is the optimal solution to Problem (25), hence x?

is efficient power allocation. Moreover, since x?i = di, the
allocation is also proportionally fair with γ = 0. Therefore,
x? is a proportionally fair allocation. Consider next the case
when

∑N
i=1 di > C. Then the KKT optimality conditions of
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Problem (25) show that the optimal solution is x?i = di(1−p?),
where p? = (

∑N
i=1 di − C)/(

∑N
i=1 di), is the optimal dual

variable associated to the constraint
∑N
i=1 xi ≤ C. Then x?

is a proportionally fair allocation with γ = p?. Moreover, we
have

∑N
i=1 x

?
i =

∑N
i=1 di(1−p?) =

∑N
i=1 di−

∑N
i=1 di+C =

C, which proves that x? is an efficient power allocation.

APPENDIX B
PROOFS FOR SECTION IV

A. Proof of Theorem 2

Proof. We prove this result by induction. Let some primal
problem R ∈ Rµ,N,P and the associated dual problem D ∈
DL,P be given. Then the initial value xqR(0) = [xi(P )]i∈N is
feasible by Lemma 5 and Lemma 6-a) in Appendix A. We next
show that if xqR(t) is feasible then xqR(t+ 1) is also feasible.
We consider separately the two cases when ∆(t) ≤ 0 and
∆(t) > 0, where ∆(t) = θt(D

′(pqD(0)), . . . , D′(pqD(t))) is
defined in Equation (6b).

Suppose that ∆(t) ≤ 0. Then we have from Equation (6c)
that pqD(t + 1) ≥ pqD(t). Moreover, we have from Lemma 6-
c) in Appendix A that pqD(t) ≥ p? := minP?R. Therefore,
pqD(t+1) ≥ pqD(t) ≥ p? so xqR(t+1) is feasible by Lemma 6.

Suppose that ∆(t) > 0. Then pqD(t) > pqD(t+ 1) so

D′(pqD(t))−D′(pqD(t+1)) ≤L (pqD(t)− pqD(t+1))

≤L θt(D
′(pqD(0)), . . . , D′(pqD(t)))

≤D′(pqD(t)), (26)

where the first inequality is obtained by using the fact that
D′(·) is L-Lipschitz continuous and that pqD(t)−pqD(t+1) > 0,
the second inequality is obtained by using Equation (6c) and
the fact that ∆(t) > 0, and the final inequality is obtained
by using Equation (18) and the fact that D′(pqD(t)) ≥ 0 by
Lemma 6-b) in Appendix A. By rearranging (26) we get that
D′(pqD(t+1)) ≥ 0. Therefore, xqR(t) is feasible by Lemma 6-
b).

B. Proof of Proposition 1

Proof. Take some p(0) ∈ [0, P ) and consider the primal
problem in Example 1 with C = MN−L(p(0)+P )/2. Then
the dual problem has the unique solution p? = (p(0) + P )/2.
Since p(0) < p? it follows from Lemma 6 in Appendix A that
[xi(p(0))]i∈N is infeasible.

C. Proof of Theorem 3

Proof. The proof follows directly from Lemma 3 in Sec-
tion IV-C. For example, to prove Equation (19a) for any k ≥ 4,
we consider the primal problem Rk ∈ Rµ,N,P from Lemma 3.
Then from Equation (22a) in Lemma 3 we have

BPrim
µ,N,P (QPF

µ,N,P , b) = min
q∈QPF

µ,N,P

max
R∈Rµ,N,P

||xqR(T (q, b))− x?R||,

≥ min
q∈QPF

µ,N,P

||xqRk(T (q, b))− x?Rk ||

≥P
√
N

kµ

(
1

1 + 2(b+1)

) k
k−1

,

where we have used that T (q, b) ≤ b since at least one bit is
used per iteration. The lower bound in Equation (19c) can be
proved in the same way, except by using Equation (22c) from
Lemma 3 instead of Equation (22a).

To prove Equation (19b), we use Lemma 3 to prove that
BDual
L,P (QPF

µ,N,P , b) ≥ ε for all ε ∈ [0, P ) and b ∈ N0. Let
ε ∈ [0, P ) and b ∈ N0 be given. Consider Dk ∈ DL,P from
Lemma 3, where k ∈ N is such that k > max{4, logP/ε(3 +
2b) + 1}. Then from Equation (22b) in Lemma 3 we have

BDual
L,P (QPF

µ,N,P , b) = min
q∈QPF

µ,N,P

max
D∈DL,P

dist(pqD(T (q, b)),P?D),

≥ min
q∈QPF

µ,N,P

dist(pqDk(T (q, b)),P?Dk),

≥P
(

1

3 + 2b

) 1
k−1

≥P
(

1

3 + 2b

) 1
logP/ε(3+2b)

=P

(
1

(3 + 2b)log3+2b(P/ε)

)
= P

1

P/ε
= ε,

where we have used that 1/ loga(b)= logb(a) for a, b > 0.

D. Proof of Corollary 1.

Proof. We prove the result by contradiction. Set

h(b) := BPrim
µ,N,P (QPF

µ,N,P , b)

and suppose that h(b) ∈ O(1/ba), for some a > 1. Then there
exists A1 ∈ R+ and B1 ∈ N such that h(b) ≤ A1/b

a for all
b ≥ B1. Now choose k ≥ 4 so that a2 := k/(k − 1) < a,
such k exists since limk→∞ k/(k − 1) = 1 and a > 1. From
Theorem 3, h(b) ∈ Ω

(
1
/
b

k
k−1

)
. So there exists A2 ∈ R+ and

B2 ∈ N such that h(b) ≥ A2/b
a2 for all b ≥ B2. Now choose

B = max{B1, B2, (A1/A2)1/(a−a2)}. Then by rearranging
the inequality b ≥ B ≥ (A1/A2)1/(a−a2) we have h(b) ≥
A2/b

a2 ≥ A1/b
a for all b ≥ B. This contradicts the fact that

h(b) ≤ A1/b
a for all b ≥ B1. Therefore, no such A1 and B1

can exists so h /∈ O(1/ba). The proof for BDualObj
L,P (QPF

µ,N,P , b)
follows the same steps.

E. Proof of Theorem 4

Proof. The proof follows directly from Lemma 4 in Sec-
tion IV-D. For example, to prove Equations (20a) and (20c),
consider the quantization scheme q ∈ QPF

µ,N,P given in
Lemma 4. For any ε > 0 define b1(ε) =

⌈
16LP 2/(µε2)

⌉
and b2(ε) =

⌈
16LP 2/ε

⌉
. Then from Lemma 4, we have

||xqR(T (q, b1(ε)) − x?R|| ≤ ε for all R ∈ Rµ,N,P and
D(pqR(T (q, b2(ε)))−D? ≤ ε for all D ∈ DL,P . This yields

EPrim
µ,N,P (QPF

µ,N,P , ε)≤
⌈

16LP 2

µε2

⌉
≤32LP 2

µε2
for all ε ≤ 4

√
LP
√
µ

EDualObj
L,P (QPF

µ,N,P , ε)≤
⌈

16LP 2

ε

⌉
≤32LP 2

µε
for all ε ≤ 16LP 2,

where we have used that dze ≤ 2z for z ≥ 1. Equation (20a)
can be proved by following similar arguments as used to prove
Equation (19b) in Theorem 3.

To prove Equation (21a) consider the quantization scheme
q ∈ QPF

µ,N,P . Then the upper bounds in Equation (21a) come
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directly by Equation (24a) in Lemma 4 and the fact that only
one bit is used per iteration in the quantization scheme q. The
upper bound in Equation (21b) can be proved by using that
dist(pqD(t),P?D) ≤ P for all D ∈ DL,P , since pqD(t) ∈ [0, P ]
and every dual problem in DL,P has an optimal solution in
[0, P ] from Lemma 5 in Appendix A. The upper bound in
Equation (21c) can be proved similarly as the upper bound in
Equation (21a).

F. Proof of Lemma 3

The prove is obtained by considering the primal and dual
problems in the following example.

Example 2. Take some N ∈ N0, L,P ∈ R+, α ∈ [0, P ],
and k ∈ N0, where L > 0 and k ≥ 4. Set C =
PL
k , β=C

N

(
1− αk

Pk

)
, M=C

N

(
1− α

P

)
, A1= Ckαk+1

N(k+1)Pk
− 2Lα2

N ,

A2=Lα2

2 −
Lαk+1

(k+1)Pk
, and mi = 0 and Mi = M , for i =

1, . . . , N . Let the utility function of each user i = 1, . . . , N
be given by

Ui(xi) =

{
− PCk
N(k+1)

(
1− N

C xi
) k+1

k +A1 if x ∈ [0, β]

− 2
NL

(
C + Lα− C

Pk
αk −Nxi

)2
if x ∈ [β,M ]

U ′i(xi) =

{
P
(
1− N

C xi
) 1
k if x ∈ [0, β]

1
L

(
C + Lα− C

Pk
αk −Nxi

)
if x ∈ [β,M ].

It can be verified that Ui(·) is µ-strongly concave with µ =
N/L. Therefore, (U, C,m,M) ∈ Rµ,N,P and the associated
dual problem is in the class DL,P . We also have that

xi(p) =


C
N

(
1− αk

Pk

)
+ L

N (1α− p) if p ∈ [0, α]

C
N

(
1− pk

Pk

)
if p ∈ [α, P ],

(27)

and the dual function and its derivative on the range [0, P ]
are given by

D(p) =

{
L
2 p

2 −
(
Lα− L

kPk−1α
k
)
p+A2 if p ∈ [0, α]

L
(k+1)kPk−1 p

k+1 if p ∈ [α, P ].

D′(p) =

{
Lp− Lα+ L

kPk−1α
k if p ∈ [0, α]

L
kPk−1 p

k if p ∈ [α, P ].

To prove the lower bound in the lemma, we consider the
dual function D in the example with α = 0. The optimal
dual solution is p? = 0 and the first k derivatives of D(·) are
zero. Therefore, the convergence rate of minimizing D using
dual gradient steps becomes increasingly bad as k increases.
Moreover, by tuning α ∈ [0, P ], we can ensure that for the
associated dual function Dα(·) following holds i) Dα(p) =
D(p) for all p ∈ [α, P ] and ii) the primal iterates associated
to the dual variables p < α− (1/L)D′α(α) are infeasible. We
now use this intuition to prove the lemma.

Proof. Consider the primal/dual problems R =
(U, C,m,M) ∈ Rµ,N,P and D ∈ DL,P given in
Example 2 for some k ≥ 4 with α = 0. The optimal
solutions are x?R = (C/N, . . . , C/N) and p?D = 0. Take any
q = (p(0), θt(·)) ∈ QPF

µ,N,P . The proof now follows from the
following 3 steps:
Step 1 Prove the lower bound

z(t) ≤ min
τ=0,...,t

pqD(τ) for all t ∈ N, (28)

where z(t) is defined by the recursive relation

z(t+ 1) = z(t)− 1

kP k−1
z(t)k, z(0) = P. (29)

Step 2 Prove the following lower bound on z(t)

P

(
1

1+2
(
k−1
k

)
(t+1)

) 1
k−1

≤ z(t) for t ∈ N0. (30)

Step 3 Use Steps 1 and 2 to prove Equations (22a)-(22c).
Proof of Step 1: We prove Equation (28) by induction. For

t = 0 the result holds, since p(0) ≥ P for all PF-quantization
schemes according to Proposition 1. Now suppose that the
result holds for some t ∈ N0. Set r = minτ=0,...,t p

q
D(τ).

Consider the dual problem D̄ ∈ DL,P given in Example 2
with α = r. Then D̄(p) = D(p) for all p ≥ r, so we have
D′(pqD(τ)) = D̄′(pqD(τ)) for τ = 0, . . . , t, and hence

θτ (D′(p(0)), . . ., D′(p(τ)))=θτ (D̄′(p(0)), . . ., D̄′(p(τ)))

and pqD(τ) = pq
D̄

(τ), for all τ = 0, . . . , t. Since q is primal
feasible we have

pqD(t+ 1) = pq
D̄

(t+ 1) ≥ r − 1

kP k−1
rk,

because D̄ is infeasible for all p < r−rk/(kP k−1). By using
the fact that the function g(r) = r−rk/(kP k−1) is increasing
for r ≤ P and by the fact that Equation (28) holds for t, we
obtain

pqD(t+ 1) ≥ r− 1

kP k−1
rk ≥ z(t)− 1

kP k−1
z(t)k = z(t+ 1).

Proof of Step 2: Consider the scaled sequence z̄(t) =
z(t)/P , which can be expressed by the following recursive
relation

z̄(t+ 1) = z̄(t)− 1

k
z̄(t)k, z̄(0) = 1.

Then the inequality in Equation (30) is equivalent to

v(t+ 1) ≤ z̄(t), for all t ∈ N0, (31)

where
v(t) =

(
1

1 + 2
(
k−1
k

)
t

) 1
k−1

. (32)

In the sequel, we prove the lemma by proving the inequality
in Equation (31) by induction for all t ∈ N . Direct inspection
shows that Equation (31) holds true when t = 0. In the rest
of the proof we suppose that v(t+ 1) ≤ z̄(t) holds for some
t ∈ N0 and prove that v(t+ 2) ≤ z̄(t+ 1) also holds.

To prove the result we need the following two equations

v̇(t) =− 2

k
v(t)k, v(0) = 1, (33)

2v(t+ 1)k ≥ v(t)k, for all t ≥ 1 and k ≥ 4. (34)

Equation (33) can be obtained by differentiating v(t) in
Equation (32). Equation (34) is proved in the next paragraph.
Using Equation (33) and Equation (34) we get
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v(t+2) =v(t+1)+

∫ t+2

t+1

v̇(τ)dτ = v(t+1)−2

k

∫ t+2

t+1

v(τ)kdτ

≤v(t+1)− 2

k
v(t+2)k ≤ v(t+1)− 1

k
v(t+1)k

≤z̄(t)− 1

k
z̄(t)k = z̄(t+1),

where the equality comes from Equation (33), the first inequal-
ity comes from the fact that the function v(·) is monotone
decreasing, the second inequality comes from Equation (34),
and the third inequality comes from the fact that v(t + 1) ≤
z̄(t) and that the function g(a) = a − (1/k)ak is monotone
increasing on the interval [0, 1]. Next, we complete the proof
by proving Equation (34).

Proof of Equation (34): For k ≥ 4, following holds

1

2
k−1
k − 1

− 1

2

k

k − 1
≤ 1

2
3
4 − 1

− 1

2
≤ 1, (35)

where the first inequality is obtained by noting that 1/(2
k−1
k −

1) is decreasing in k and that k/(k − 1) ≥ 1. By using the
inequality in Equation (35) together with the fact that t ≥ 1
we obtain 1

2
k−1
k −1

≤ 1
2

k
k−1 + t, or by rearranging 2

k−1
k ≥

1 + 1
k

2(k−1)
+t

=
1+2( k−1

k )(t+1)

1+2( k−1
k )t

, which yields

2 ≥

(
1 + 2

(
k−1
k

)
(t+ 1)

1 + 2
(
k−1
k

)
t

) k
k−1

=
v(t)k

v(t+ 1)k
.

Rearranging the above inequality yields Equation (34).
Proof of Step 3: From Equations (28) and (30) we have

dist(pqD(t),P?) ≥ z(t) ≥ P

(
1

1+2
(
k−1
k

)
(t+1)

) 1
k−1

,

which proves Equation (22b). Then we have from Equa-
tion (27) and the equality C = PN/(kµ) that

||xqR(t)− x?R|| =

√√√√ N∑
i=1

(xi(t)−x?i )2 =

√
N

(
C

NP k
pqD(t)k

)2

≥P
√
N

µk

(
1

1+2
(
k−1
k

)
(t+1)

) k
k−1

,

which proves Equation (22a). Finally, by using that D(p(0))−
D? = P 2L/((k+1)k), which is obtained by substituting p(0)
and p? into D(·) defined in Example 2, we get that

D(pqD(t))−D? ≥ L

(k + 1)kP k−1
pqD(t)k+1

=
P 2L

(k + 1)k

(
1

1+2
(
k−1
k

)
(t+1)

) k+1
k−1

≥(D(p(0))−D?)

(
1

1+2
(
k−1
k

)
(t+1)

) k+1
k−1

,

which proves Equation (22c).

G. Proof of Lemma 4

Proof. The fact that q is a primal feasible quantization scheme
follows from Theorem 2 in Section IV-A and Equation (37)
proved below. We now prove the upper bounds in Equa-
tions (24a) and (24b).

a) Proof of Equation (24a): Consider any primal problem
R ∈ Rµ,N,P and the associated dual problem D ∈ DL,P . We
start by showing that ||xqR(t)−x?R|| ≤

√
2
µ (D(pqD(t))−D?),

by following similar arguments as used in the proof of
Theorem 1 in [4]. Define the Lagrangian function as L(x, p) =∑N
i=1 Ui(xi)−p

(∑N
i=1 xi − C

)
. The function L(x, p) is µ-

strongly concave in x, since U(·) is µ-strongly concave and
the sum of a µ-strongly concave and a concave function is
µ-strongly, see Lemma 2.1.4 in [29]. Therefore, we have

D(pqD(t))−D? =L(xqR(t), pqD(t))− U(x?R)

≥L(xqR(t), pqD(t))− L(x?R, p
q
D(t))

≥µ
2
||xqR(t)− x?R||2,

where the equality comes by the strong duality, the first
inequality comes by using that pqD(t) ≥ 0 and that the primal
optimal solution x?R is feasible, and the second inequality
comes by using that L(x, p) is µ-strongly concave in x and
the fact that xqR(t) minimizes the function L(·, pqD(t)) on the
set
∏N
i=1[mi,Mi] (see Equation (5a)). Now the result follows

directly from part b) of the theorem, which we prove now.
b) Proof of Equation (24b): Let t ∈ N and the dual problem

D ∈ DL,P be given. We can assume that pqD(t) /∈ P?D, since
otherwise dist(pqD(t),P?D) = 0 so then the result trivially
holds. The proof follows the following 6 steps:
Step 1 Use the fact that pqD(t) /∈ P?D to prove that

pqD(i+1) = pqD(i)−∆(i), for i = 0, . . . , t−1, (36)

where ∆(i) = θi(D
′(p(0)), . . . , D′(p(i)).

Step 2 Use that pqD(t) /∈ P?D to prove that D′(pqD(0)) ≤ LP .
Step 3 Use Step 2 to prove that for each i = 0, . . . , t, either

∆(i) = 0 or the following inequality holds

1

2L
D′(p(i)) ≤∆(i) ≤ 1

L
D′(p(i)). (37)

Step 4 Use Step 3 to prove to the inequality

D(pqD(t))−D? ≤ 2LP 2

2τ
(38)

where τ := |{i = 0, . . . , t− 1 |∆(i) = 0}|.
Step 5 Use Steps 1-3 to prove that if τ < t then the inequality

D(pqD(t))−D? ≤ 8LP 2

t− τ
(39)

where τ := |{i = 0, . . . , t− 1 |∆(i) = 0}|.
Step 6 Use Step 4 and Step 5 to prove the inequality in Equa-

tion (24b), that is D(pqD(t))−D? ≤ 32LP 2

t for t ≥ 1.

Proof of Step 1: From Equation (6) we have that pqD(i +
1) = dpqD(i)−∆(i)e+, for i = 0, . . . , t−1. If pqD(i)−∆(i) ≥
0 for i = 0, . . . , t − 1 then Equation (36) trivially holds.
Therefore, we suppose that pqD(i)−∆(i) < 0 for some i ∈ N0.
Then pqD(i + 1) = 0. It follows that pqD(i + 1) ∈ P? since
D′(pqD(i+1)) ≥ 0 from Lemma 6-b) in Appendix A (see
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the optimality conditions for constrained convex optimization
problems in [30, Proposition 2.1.2.]). Moreover, then pqD(j) ∈
P?D for all j ≥ i + 1, because ∆(j) ≥ 0 for all j ∈ N0. In
particular, pqD(t) ∈ P?D which contradicts that pqD(t) /∈ P?.

Proof of Step 2: We prove this by contradiction. Suppose
that D′(pqD(0)) > LP , then from Equations (23a) and (23b)
we have pqD(1) = dpqD(0)−∆(0)e+ = dP −P e+ = 0 ∈ P?D.
Therefore, pqD(1) ∈ P?D implying that pqD(t) ∈ P?D.

Proof of Step 3: We first prove the upper bound in Equa-
tion (37). If ∆(i) 6= 0, then from Equations (23b) and (23c)
we have that ∆(i) = Qt and (1/L)D′(pqD(t)) ≥ Qt = ∆(t).

We now prove by induction over i that either ∆(i) = 0
or the lower bound in Equation (37) holds for i, for all i =
0, . . . , t. Consider the case when i = 0. If ∆(0) 6= 0, then
form Equation (23) we have that ∆(0) = P and from Step 2
that D′(pqD(0)) ≤ LP , so the lower bound in Equation (37)
holds. Now suppose that either ∆(i) = 0 or the lower bound
in Equation (37) holds for i+1. Suppose also that ∆(i+1) 6=
0, since otherwise the result already holds. Consider first the
case when ∆(i) = 0. Then from Equations (23b) and (23c),
we have that D′(pqD(i)) < QiL, pqD(i + 1) = pqD(i), and
∆(i+ 1) = Qi+1 = Qi/2. Therefore, we have

D′(pqD(i+1)) = D′(pqD(i)) < QiL = 2Qi+1L = 2L∆(i+1),

or (1/2L)D′(pqD(i+1)) < ∆(i+1). Consider next the case
when ∆(i) 6= 0. Then from Equations (23b) and (23c), we
have that ∆(i) = ∆(i+1) and pqD(i + 1) = pqD(i) −∆(i) ≤
pqD(i). Therefore, because of the monotonicity of D′ we have
1

2LD
′(pqD(i+1)) ≤ 1

2LD
′(pqD(i)) ≤ ∆(i) = ∆(i+1).

Proof of Step 4: We first show that D′(pqD(t)) ≤ 2LP
2τ .

From (23) we have that Qt = P/2τ . Therefore, if ∆(t) = 0
then the inequality follows from Equation (23b). Otherwise,
if ∆(t) 6= 0 then the inequality follows from Equation (37) in
Step 3. From the inequality above and from the convexity of
D(·), we have for any p? ∈ P?D that

D(pqD(t))−D? ≤ D′(pqD(t))(pqD(t)− p?) ≤ 2LP 2

2τ
, (40)

where we have used that P ≥ pqD(t)−p? ≥ 0 from Lemma 6-
b) in Appendix A.

Proof of Step 5: The proof of this step is similar to the
proof of Theorem 2.1.14 in [29] that shows the O(1/t)
convergence rate of gradient methods with constant step-size
when minimizing convex functions with Lipschitz continuous
gradients. However, there are some key differences since the
gradient information is quantized here.

Consider now the sequence (ci)i=1,...,t−τ of the elements
in the set {j = 0, . . . , t− 1 | ∆(j) 6= 0}, an increasing order.
From Step 1 and the fact that D(·) is convex and L-Lipschitz
continuous we have [29, Theorem 2.1.5]

D(pqD(ci+1)) ≤D(pqD(ci)) +D′(pqD(ci))(−∆(ci)) +
L

2
∆(ci)

2

≤D(pqD(ci))−
L

2
∆(ci)

2, (41)

where the second inequality comes by using Equation (37).
Now consider the sequence ωi = D(pqD(ci)) − D?. From
Equation (37) and the convexity of D(·) we have ωi ≤
D′(pqD(ci))(p

q
D(ci) − p?) ≤ 2LP∆(ci),where p? ∈ P?D.

This together with Equation (41) yields ωi+1 ≤ ωi −
1

8P 2Lω
2
i , for i = 1, . . . , t − τ − 1, and by multiplying

1/(ωiωi+1) on both sides and rearranging we have 1
ωi+1

≥
1
ωi

+ 1
8P 2L

ωi
ωi+1

≥ 1
ωi

+ 1
8P 2L , where we have used that ωi+1 ≥

ωi. Then by summing over i we get 1
ωi+1

≥ 1
ω0

+ 1
8P 2L (i+1),

or by rearranging

ωi+1 ≤
8P 2L(D(pqD(0))−D?)

8P 2L+ (D(pqD(0))−D?)(i+ 1)
≤ 8P 2L

i+ 1
.

Now the inequality in Equation (39) follows by setting i =
t− τ − 1 in the inequality above and by Equation (40).

Proof of Step 6: If τ > t/2 then we have from Step 4 that

D(pqD(t))−D? ≤ 2P 2L

2τ
≤ P 2L

2t/2
≤ 32P 2L

t
,

where the last inequality comes from that 16 × 2t/2 ≥ t for
t ∈ N0, which follows from that h(t) := 16 × 2t/2 − t ≥ 0
for t ∈ R+ since h(0) = 16 and h′(t) > 0 on R+. If τ ≤ t/2
then t− τ ≥ t/2 and the result holds from Step 5.
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