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Abstract— This paper focuses on the problem of multi-robot
source-seeking, where a group of mobile sensors localizes and
moves close to a single source using only local measurements.
Drawing inspiration from the optimal sensor placement re-
search, we develop an algorithm that estimates the source
location while approaches the source following gradient descent
steps on a loss function defined on the Fisher information. We
show that exploiting Fisher information gives a higher chance
of obtaining an accurate source location estimate and naturally
leads the sensors to the source. Our numerical experiments
demonstrate the advantages of our algorithm, including faster
convergence to the source than other algorithms, flexibility in
the choice of the loss function, and robustness to measurement
modeling errors. Moreover, the performance improves as the
number of sensors increases, showing the advantage of using
multi-robots in our source-seeking algorithm. We also imple-
ment physical experiments to test the algorithm on small ground
vehicles with light sensors, demonstrating success in seeking a
moving light source.

I. INTRODUCTION

Multi-agent source seeking is to use autonomous vehicles
with measurement capabilities to locate a source of interest
whose position is unknown. The source of interest can be a
light source, a radio signal transmitter, or a chemical leakage
point. The source-seeking vehicles, or mobile sensors, can
measure the source’s influence on the environment and use
this information to locate the source.

A large body of source seeking research investigates
field climbing methods [1]–[4]. Assuming the source signal
gets stronger as the sensor-source distance shortens, mobile
sensors can “climb” the source signal field to physically
approach the source. These methods do not require explicit
knowledge of the measurement model, making them easy to
implement and generalizable to different applications. How-
ever, field climbing methods only exploit local information
of the source field, as the sensors must maintain a tight
formation to make a reasonable ascent direction estimate,
as is the case in [3], [4]. Furthermore, to achieve a stable
increase in measurement value, the sensors cannot move too
fast as a group. Therefore field climbing methods are not
necessarily the most effective source-seeking methods.

An alternative approach is to perform source identifica-
tion/localization using various estimation methods, such as
(Extended) Kalman Filter (EKF) [5], [6], Particle Filter (PF)
[7], [8], and so on, to keep a constantly updated estimate of
the source location over time. Despite requiring an explicit
measurement model, these methods enable the fusion of
measurements from multiple sensors to quickly identify
a global view of the measurement field. To improve the
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Fig. 1: A snapshot of seeking a moving light source in a
dark room with three mobile light sensors.

estimation, studies on optimal sensor placement propose to
optimize specific information metrics, in particular, variants
of Fisher information measures [6], [7], [9]–[14], which
relate closely to the famous Cramér-Rao lower bound [15],
[16].

However, these studies typically focus on deriving closed-
form solutions of optimal sensor placement for particular
types of measurement models [7], [11], [13]. Therefore, the
result of one paper often does not generalize, not to mention
that closed-form solutions might not exist for many general
measurement models. Besides, a large number of the studies
focus on sensors constrained to a restricted area [6], [10],
[11], [14] rather than letting sensors move closer to the
source, and the estimation methods are often not robust to
the modeling error.

Contribution. This paper draws advantages from the two
types of methods mentioned above (field climbing and
source localization) to develop multi-robot source-seeking
algorithms. In particular, we propose an algorithm using
range-based measurements. Each iteration consists of three
steps:
1) Collecting range-based measurements.
2) Performing source location estimation using the measure-
ments.
3) Moving sensors along the gradient direction of the trace
of the inverse of Fisher information.
The advantages and contributions of our methods can be
summarized as,
• Our method improves the source location estimate while

also moves sensors closer to the source. The source could be
either stationary or moving. Compared with field climbing
algorithms, numerical studies quantitatively demonstrate that
our algorithm converges much faster to the source and
performs more consistently over repeated trials. See IV-B.
• Our algorithm, especially its gradient-guided movement,

provides flexibility in handling various measurement models
and picking different types of information metrics as loss



functions. Section IV-C confirms at least three applicable
metrics.
• The algorithm takes advantage of multi-sensors in the

sense that the performance improves as the number of
sensors increases, see IV-B.
• The algorithm is more robust to modeling error than the

source localization with stationary sensors, see IV-D.
• We implement our algorithm on small ground vehicles

carrying light sensors to seek a moving light source in a dark
room, as shown in Figure 1. The hardware implementation
further demonstrates the effectiveness of our algorithm. See
IV-E.

A. Related Works

Field climbing methods. The field climbing problem stems
from scientific research that studies animal behavior in ex-
ploring nutrition or chemical concentration fields [17], [18].
Inspired by these studies, some methods propose using field
value measurements to estimate the field gradient and apply
formation control to climb along the gradient [2], [3]. There
are also methods not reliant on gradient estimates: [4] keeps
the sensors in a circular formation and uses measured field
values as directional weights to guide the overall movement;
[19], [20] are based on Particle Swarm Optimization (PSO).

The main differences between field climbing and our
algorithm are that i) field climbing maximizes the source field
value, while ours exploits the Fisher information, an indicator
of both estimation accuracy and source-sensor distance, ii)
field climbing does not require knowing the measurement
function, but ours does, iii) field climbing algorithms often
demand a tight sensor formation for a stable field ascent, only
exploiting local information, while our algorithm uses the
sensors to collect global information for source localization.
We will show in Section IV that the sensors under our
algorithm tend to spread out to estimate the source better.

Source localization and optimal sensor placement. If a
measurement model is available, various estimation methods
can be applied to estimate source location, including EKF
[5], [6], PF [7], [8], or even a reconstruction of the entire
source field [9], [21]. To improve the estimation, people
have studied optimal sensor placement by optimizing various
information metrics including covariance [22], [23], mutual
information [8], [24], and Fisher information measures [6],
[7], [9]–[14] such as the determinant of Fisher information,
the largest eigenvalue of its inverse, and the trace of its
inverse (D-, E-, and A-optimality criterion respectively).

Our method also employs Fisher information but is differ-
ent from the previous ones in that:
1) Most of the works focus on deriving closed-form so-
lutions of optimal sensor placement for a particular type
of measurement model, for example, RSS [11], pollutant
diffusion [7], and gamma camera [13]. In contrast, our
focus is not on providing closed-form solutions but instead
providing a gradient-based method applicable to a large
class of range-based measurement models. This method also
provides flexibility in choosing different information metrics
as loss functions, see IV-C.
2) Many previous works focus on finding the optimal angu-
lar placement of the sensors at a fixed distance to the source

or on a restricted area [6], [10], [11], [14]. In contrast, we
allow the sensors to move freely and eventually approach the
source.
3) Some studies relax the restrictions on the sensor move-
ment [12], [13]. However, these methods produce a spiraling
sensor movement which is inefficient for source-seeking pur-
poses, while our method does not produce such movement.
Moreover, the way-point planning in these methods is based
on the closed-form optimal placement solutions, but our
method follows the gradient steps.
Bayesian inference and optimization. The recent advances in
Bayesian learning inspire many studies to adopt the Bayesian
methods for source seeking [25]–[27]. These studies view
the environment as a field characterized by an (unknown)
density function related to measurement and use Gaussian
Process or other likelihood models as a surrogate to guide
the sensor movements for new measurement collections. The
computation (for running the posterior update and Bayesian
optimization) and memory (for storing historical measure-
ments as in non-parametric Bayesian methods) demands of
these methods are often higher than our method. Overall,
Bayesian-based methods and our method are designed from
different principles. A detailed comparison is left for future
work.

Finally, we would like to highlight that our work is
significantly inspired by [6], which studies the optimal sensor
placement problem on a surveillance boundary. We leverage
their ideas to introduce the Fisher information in our objec-
tive, but we change the loss function from the determinant
of Fisher information to the trace of its inverse. We also
generalize the measurement model, so it fits our experiments
and other real-world measurement settings. To handle such
more general measurement models, the sensors only compute
the gradient of the loss function rather than solving for its
optimum at each time step.

II. PROBLEM SETUP

We consider the task of using a team of mobile sensors,
with centralized coordination, to find a source whose location
is unknown. For concreteness, in our experiment setting, the
source is a lamp in a dark room, and the mobile sensors
are ground vehicles carrying light sensors measuring the
local light intensity. The sensor positions are assumed to be
available. The goal is to let sensors move to the proximity
of the source based on field measurements.

Specifically, we use q 2 Rk to denote the source po-
sition, and use p1; p2; � � � ; pm 2 Rk to denote the sensor
positions, where m is the number of sensors and k is the
spatial dimension. We use the vector (in bold font) p =�
p>1 p>2 � � � p>m

�>
to denote the joint location of all

mobile sensors.
In this paper, we consider nonholomonic ground vehicles

with pi = [p1
i ; p

2
i ]> 2 R2. The states of mobile sensor i

are xi := [p1
i ; p

2
i ; �i]

> with � being the robot orientation,
and the control inputs ui are the linear and angular velocities
of the robot ui := [vi; !i]

>. The robot motion dynamics is
given as



Fig. 2: The three consecutive steps in the proposed source
seeking algorithm.
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In addition, we assume the measurement model is known,
which is a reasonable assumption in our context since the
sensor characteristics are usually known. Formally, the mea-
surement made by the ith sensor, denoted by yi, is generated
by a known continuously differentiable function Hi subject
to measurement noise �i:

yi = Hi(pi; q) + �i: (2)

The measurement function Hi may differ across different
sensors, and we assume its value is independent of the
locations of other sensors. We let y = [y1; y2; : : : ; ym]>

denote the vector of all measurement values, let ν =
[�1; �2; : : : ; �m]> be the noise vector, and let H : Rmk �
Rk ! Rm be the mapping that describes the joint measure-
ment made by the sensors, i.e.,

H(p; q) =

264 H1(p1; q)
...

Hm(pm; q)

375 : (3)

Our measurement model can be rewritten as

y = H(p; q) + ν: (4)

Given the information of sensor locations p and measure-
ments y, our objective is to have at least one of the sensors
get within �0 distance to the source. In other words, we want
to achieve

kpi � qk � �0; 9i 2 f1; 2; :::;mg; (5)

where �0 is some small positive number.

III. ALGORITHM

In this section, we will first present our algorithm, and
then explain the rationale behind the algorithm design with
theoretical justifications.

A. The Proposed Algorithm
Our source seeking algorithm consists of three consecutive

steps in one iteration: measurement, source location estima-
tion, and sensor movement, as illustrated in Figure 2 and
detailed in Algorithm 1.
1) Measurement : In Lines 2–3 of Algorithm 1, the mobile
sensors report their locations fpigm

i=1 and latest measure-
ments fyigm

i=1, which then form the joint location vector p
and the measurement vector y.
2) Source Location Estimation: In Line 4 of Algorithm 1,
using the information available (i.e., p and y), the loca-
tion estimation algorithm E produces the estimated source

location q̂. In our implementations, the Extended Kalman
Filter (EKF) is employed as the estimation algorithm, which
assumes that the source moves according to the following
dynamics

s :=

�
q
_q

�
; _s =

�
_q
0

�
=

�
0 1
0 0

�
s: (6)

This dynamics is sufficient to model the movement of a
source that is moving slowly. At each time step, the EKF
will take in the sensor measurements and sensor locations
and return an estimate q̂ of the source location. Please see
[28, Definition 3.1] for details about the EKF update.
3) Sensor Movement: In Lines 5–10, the sensors move along
the gradient descent directions of the following loss function

L(p; q) = Tr
h�
rqH(p; q) � rqH(p; q)>

�−1
i
: (7)

We will explain the motivation of this loss function later
in Section III-B, by relating it to the Fisher information
matrix and the Cramér-Rao lower bound [15], [16]. This step
includes two parts: waypoint planning and waypoint tracking.

a) Waypoint planning: In Lines 5–8, with the source
location estimate q̂ obtained in Line 4, we generate a set of
waypoints p̂(0); : : : ; p̂(T ) by applying gradient descent on
L with respect to p, with q = q̂ fixed. Here in Line 7, �t > 0
is the step size and Mt � 0 is a directional regularization
matrix.

b) Waypoint tracking: In Lines 9–10, after the way-
points p̂(0); : : : ; p̂(T ) have been calculated by the gradient
descent on L, we extract the waypoints p̂i(0); : : : ; p̂i(T )
for each mobile sensor i, and use the motion planner MP
to calculate a sequence of control inputs ui(1); : : : ; ui(T )
and apply the control at the first instance ui(1) to the
corresponding mobile sensor.1 The motion planner MP can

1This is inspired by the framework of receding horizon control/model
predictive control [29] which works well when the tracking trajectory is
time-varying.

Algorithm 1 Source Seeking by Exploiting Fisher informa-
tion
Input: Small constant �0 > 0, the location estima-

tor E : (y;p) 7! q̂, motion planner MP :
(p̂i(0); p̂i(1); : : : ; p̂i(T )) 7! (ui(1); : : : ; ui(T )).

1: repeat
2: Get sensor locations pi from all mobile sensors i,

forming p =
�
p>1 ; p

>
2 ; : : : ; p

>
m

�>
.

3: Get measurement yi from all mobile sensors i, form-
ing y = [y1; y2; : : : ; ym]>.

4: Estimate the location of the source by q̂  E(y;p).
5: Set the initial waypoints p̂(0) p.
6: for t = 1 to T do
7: p̂(t+ 1) p̂(t)� �tMtrpLjp̂(t);q̂ .
8: end for
9: Extract waypoints (p̂i(t))

T
t=0 from (p̂(t))T

t=0 for
mobile sensor i, and generate the control inputs
(ui(1); : : : ; ; ui(T )) MP (p̂i(0); : : : ; p̂i(T )).

10: Each mobile sensor i execute control input ui(1).
11: until mini=1;2:::mfjjpi � q̂jjg � �0



be viewed as a device that transforms the planned way-
points into low-level actuation of a mobile sensor: by apply-
ing (ui (1); : : : ; ui (T)) = MP (p̂i (0); : : : ; p̂i (T)) to sensor
i , the sensor will follow the trajectory of the waypoints
p̂i (0); : : : ; p̂i (T). The motion plannerMP typically requires
the knowledge of the sensors' dynamics to compute the
control inputs, and any method that can ful�ll this task can
be a motion planner in Algorithm 1. In our implementation,
the motion planner is a combination of spline-based motion
generation described in [30] and the Linear Quadratic Reg-
ulator (LQR). Regarding the choice of the planning horizon
T, in the Gazebo simulations and hardware implementation,
we setT = 20 to ensure stability in sensor movement and
robustness to disturbances. Meanwhile, in numerical studies
where the robot dynamics is not simulated, it suf�ces to set
T = 1 .

Finally, the loop resets, and the sensors make a new set of
measurements. The loop repeats until one sensor is within
� 0 distance toq̂.

Remark1. Note the algorithm aims to minimizeL(p; q̂)
rather thanL(p; q), which raises the question of whether
improving the former leads to a decrease in the value of
the latter. Intuitively, it is expected that if̂q and q are
suf�ciently close to each other, i.e., the estimation error is
small, then improvingL(p; q̂) will decreaseL(p; q). These
two components of the algorithm rely on each other to
function as a whole.

B. The Design Rationale of the Loss Function

In location-estimation-based source seeking, one uses the
estimated location as a reference to move the sensors. Nat-
urally, we want the location estimation to be as accurate as
possible. However, theCramér–Rao Lower Bound(CRLB)
shows an intrinsic limitation that prevents the location es-
timation from being arbitrarily accurate. Formally, we have
the following de�nition and theorem:

De�nition 1 (Fisher Information). Given the measurement
function H (p; q), and assuming the measurement noise is
Gaussian white, the Fisher information matrix relative to the
source locationq is

F IM = r qH (p; q) � r qH (p; q)> :

Herer qH (p; q) denotes thek � m matrix whosei th column
is equal to the (partial) gradientr qH i (pi ; q).

Theorem 1(Craḿer–Rao Lower Bound (CRLB) [15], [16]).
For any unbiased estimator̂q of q, the following matrix
inequality holds2

E[(q̂ � q)( q̂ � q)> ] � F IM � 1: (8)

Martinez and Bullo [6] built on this result to maximize
det(F IM ) in the hope of makingF IM � 1 small so that the
estimation error is more likely to achieve low values. How-
ever, a large value ofdet(F IM ) does not necessarily mean
that the eigenvalues ofF IM � 1 will be uniformly small, and

2Strictly speaking, an additional constant factor should be multiplied to
the F IM as in De�nition 1 for CRLB to hold. The constant is related to
the covariance of measurement noise but is independent of(q;p ) and is
inconsequential for our algorithm and results.

the lower bound provided by Theorem 1 might still be large.
In Section IV-C, we show by simulation results that it is
indeed not ideal for our application. Therefore, in this paper,
we modify their idea and consider minimizingTr( F IM � 1)
instead, which is also known as theA-optimality criterion
[31] in literature.

The minimization of the loss function (7) will result in
two consequences: First, by taking the trace on both sides of
(8), we getE

�
kq̂ � qk2

�
� Tr

�
F IM � 1

�
= L (p; q); i.e.,

the loss function is a lower bound on the mean squared
error, and so by minimizing (7), we increase the chance of
getting accurate source location estimates. Second, as we will
show in the following subsection, a small value of the loss
function implies the existence of at least one sensor that gets
suf�ciently close to the source under certain assumptions on
the measurement model.

Remark2. While we chooseTr( F IM � 1) as the loss func-
tion in this paper, in principle one can also pick other
information metrics as the loss functionL in Algorithm 1.
In Section IV-C, we will numerically test the performance
using different options of the loss function.

C. Reaching the Source

We now provide analytical results showing that mini-
mizing Tr( F IM � 1) will indeed enforce some sensor to
approach the source. For the sake of theoretical analysis, we
need some extra assumptions on the measurement model. In
particular, we assume thatH i is a monotonic function of the
distance between sensors and the source.

Assumption 1. We make the following assumptions on the
measurement functionsH i :
1) Isotropic measurement: The measurement values de-
pend only on source-sensor distance, i.e.,

H i (pi ; q) = hi (kpi � qk) = hi (r i ) (9)

for some functionhi : (0; + 1 ) ! R, wherer i := kpi � qk.
2) Monotonicity : Each functionhi (r ) is nonnegative and
is monotonically decreasing inr . In addition, asr ! 0, we
havehi (r ) ! + 1 as well asjh0

i (r )j ! + 1 .

Here the termisotropic means that the measurement does
not depend on source-sensor bearings, a.k.a. relative angles.
The isotropic and monotonic properties hold for a wide range
of functions that model the decay of measurement signals
over distance, including, e.g., the functionh(r ) = � log r
for RSS sensors, and the functionsh(r ) = 1 =rb; b > 0 for
light sensors. We can then prove the following proposition,
showing that minimizingTr( F IM � 1) indeed results in at
least one sensor getting suf�ciently close to the source.

Proposition 1 (Reaching the Source). Let r̂ i denote the unit
direction vector from the source to thei th mobile sensor, i.e.,
r̂ i = ( pi � q)=kpi � qk. Suppose the smallest eigenvalue ofP m

i =1 r̂ i r̂ >
i is not zero at all times. Then under Assumption 1,

we havemin i r i ! 0 wheneverL (p; q) ! 0.

We remark that for the casek = 2 , i.e., the source and the
mobile sensors move on a 2D plane, the smallest eigenvalue
of

P m
i =1 r̂ i r̂ >

i is not zero as long as there is more than
one mobile sensor, and all mobile sensors together with



the source are not on the same straight line. The proof of
Proposition 1 can be found in Appendix I.

IV. EXPERIMENTAL RESULTS

This section illustrates the performance of our proposed
algorithm through experiments. The algorithm performance
under actual robot dynamics is studied in simulations in IV-
A. In the other three numerical studies, we remove the robot
dynamics in simulations to ef�ciently conduct repetitive trials
and assume the sensors follow the gradient steps exactly. We
study the in�uence of the number of sensors in IV-B, the
difference of various information metrics in IV-C, and the
robustness to modeling error in IV-D. Finally, we describe
our real robot implementations in IV-E with a supplementary
video recording the experimental results available at [32].

A. Gazebo Numerical Experiments

The following numerical experiments are carried out using
the Gazebo simulation toolbox [33], with virtual mobile
sensors simulating the same dynamics as the actual robots.
We generate simulated measurement values of the sensors
by yi = 1=r2

i + � i , with � i drawn independently from
N (0; 0:01). The measurement functionhi (r ) = 1 =r2

i is
given to the EKF for estimation.

1) Stationary Source:In the �rst set of simulations, we
use three mobile sensors to seek a stationary source. The
source is �xed at position(6:0; 6:0), while the mobile sensors
are initially placed at(1:0; 2:0); (2:0; 2:0); (3:0; 2:0). The
initial guess of source location given to the EKF is(3:0; 4:0).
The terminal condition threshold� 0 = 0 :5. We compare the
convergence to a stationary source among three algorithms:
(a) our algorithm; (b) the �eld climbing algorithm introduced
by [4] that only maximizes measured signal strength; (c) fol-
lowing straight lines to the estimated location. (c) is included
to show the importance of exploiting Fisher information in
obtaining accurate estimation. The results are displayed in
Figure 3.

First, notice that (c) fails to converge to the source,
as shown in Figure 3c. We suspect the reason is sensors
cluster together quickly as they move to the (same) esti-
mated location and cannot provide suf�ciently rich, diverse
measurements for a reasonable estimation. Consequently, the
estimate gradually deviates from the source location and so
follows the sensors. On the other hand, if taking a trajectory
that improves the Fisher information, the sensors cover the
space more thoroughly, resulting in a stable decrease in the
estimation error and the �nal success of reaching the source,
as shown in Figure 3a.

Comparing Figure 3a and 3b, note that sensors using our
algorithm �rst spread out to estimate the source location bet-
ter, then converge to the source, whereas sensors doing �eld
climbing maintain a tight formation while steadily approach
the source. Since we use constant rather than diminishing
step sizes for 3b, the virtual robots do not stop entirely
near the source and perform a looping behavior. Although
our algorithm and the �eld climbing algorithm [4] are both
successful with a stationary source, our algorithm converges
faster consistently over repetitive trials, as is shown later
in IV-B. Our algorithm also outperforms �eld climbing in
seeking a moving source, as is shown next.

2) Moving Source:All parameters are kept the same as
the stationary case in this experiment set, except the source
moves in a circular motion with constant speed. See Figures
4a, 4b, 4c. Note (c) again leads to a sensor formation that
causes the estimation to deviate from the actual source
location quickly. Both (a) and (b) successfully get close
to the source. However, the �eld climbing method exhibits
unnecessary irregular motion when the sensors are near the
source. We suspect that as the sensors get close to the
source, the �eld climbing direction becomes very sensitive
to the source movement. In comparison, sensors following
our algorithm trace much more stable paths. We later discuss
more advantages of (a).

B. Performance with Sensor Swarms

We now investigate the in�uence of the number of mobile
sensors on the algorithm performance. We perform repetitive
simulations to study the convergence rate of source-sensor
distances and the evolution of estimation error. We use a
stationary source �xed at position(6:0; 6:0) and randomize
the initial sensor locations following uniform distribution in
a 3:0-by-3:0 rectangle, as shown in Figure 6a.

The �rst set of experiments studies the convergence rate
of the sensors to the source. We look at mobile sensor team
performance with sizes at 3, 10, 20, 50, and also compare our
algorithm with two other �eld climbing methods [3] [4]. The
results in Figure 5 show that our algorithm converges much
faster than the others. In addition, we see that increasing the
number of sensors reduces the variance of all algorithms sub-
stantially while not affecting the convergence time. Because
the speed of sensors has an upper bound regardless of the
number of sensors, the overall convergence rate of source-
sensor distance is limited. But having more sensors provides
more measurements, which reduces the variance and results
in more consistent, stable trials. Our algorithm bene�ts the
most from having more sensors since more measurements
contribute to better estimation, thus faster convergence with
smaller variance.

To further test the above conjecture that sensors moving
freely and in the direction of improving Fisher information
brings richer measurement and therefore enhances the esti-
mation, we conduct the following three experiments: 1) The
sensors move freely guided by our proposed algorithm; 2)
The sensors are restricted to stay outside a radius of3:0
from the source, performing projected gradient descent of our
proposed loss function at the boundary; 3) The sensors do not
move but only perform location estimation. The results are
shown in Figure 6. We see that a larger team corresponds to a
faster decline in the expected estimation error with a smaller
variance. Moreover, sensors moving freely as in Figure 6b
results in a quicker decrease in estimation error with smaller
variance.

Scalability. Note the current algorithm requires the sen-
sors to communicate with a central coordinator to submit
measurements and receive waypoints. System scalability then
becomes one potential issue, as the increasing number of
sensors puts a burden on communication/computation. One
solution is to extend our algorithm to a distributed setting
where sensors only communicate with local neighbors, per-
form distributed estimation such as distributed EKF [34], and
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